Binaural beats were the first method discovered for brainwave entrainment and works by delivering tones of different audible frequencies to the two ears with the difference in frequency between the two tones being the frequency of entrainment. The difference in frequency between the two tones must be less than 30 hertz, and this resulting frequency is called a beat or the target frequency, and it is processed in a brain region called the olivary body. When listening to such tones with stereo headphones, the two hemispheres of the brain become synchronized at the target frequency.
When tuning instruments that can produce sustained tones, beats can be readily recognized. Tuning two tones to a unison will present a peculiar effect: when the two tones are close in pitch but not identical, the difference in frequency generates the beating. The volume varies like in a tremolo as the sounds alternately interfere constructively and destructively. As the two tones gradually approach unison, the beating slows down and may become so slow as to be imperceptible. As the two tones get further apart, their beat frequency starts to approach the range of human pitch perception[1], the beating starts to sound like a note, and a combination tone is produced. This combination tone can also be referred to as a missing fundamental, as the beat frequency of any two tones is equivalent to the frequency of their implied fundamental frequency.
... These factors may be the specific frequency of BB; the targeted population-because it is known that older people have different quality of brainwave activity than, e.g., youngsters (Bazanova & Aftanas, 2008;Clark et al., 2004), and the tests used to detect the possible changes in working memory capacity. Based on the research showing a positive impact of alpha-range BB on cognitive functioning, specifically attention, auditory sequential memory, working memory, working memory storage, reasoning ability, cognitive processing and hemispheric synchronization, (Carter & Russell, 1993;Cruceanu & Rotarescu, 2013;Foster, 1990;Kennerly, 1994;McMurray, 2006) as well as on the wealth of research documenting the important role of alpha brain wave activity on vigilance, in-hibitory processes, attention, filtering out irrelevant information working memory, the visuo-spatial component of working memory, perceptual abilities and information processing speed (Braboszcz & Delorme, 2011;Clark et al., 2004;Engle et al., 1999a;Freunberger et al., 2011;Klimesch et al., 2007;Lachat et al., 2012;Oprisan, 2004;Palva & Palva, 2007;Rihs et al., 2007;Sauseng et al., 2009;Tuladhar et al., 2007;VanRullen & Koch, 2003), we believe that BB of a frequency that corresponds to the alpha range of brain activity has a temporary effect on working memory capacity. In our study, subjects were exposed to 9.55 Hz BB stimulation while we measured their working memory capacity through the Automated Operation Span Task (AOSPAN). ...
The exact physiological mechanisms to explain how exercise improves stress have not been delineated. Human and animal research indicates that being physically active improves the way the body handles stress because of changes in the hormone responses, and that exercise affects neurotransmitters in the brain such as dopamine and serotonin that affect mood and behaviors (9,11). In addition to the possible physiological mechanisms, there also is the possibility that exercise serves as a time-out or break from one’s stressors. A study that tested the time-out hypothesis used a protocol that had participants exercise but did not allow a break from stress during the exercise session (5). Participants were college-aged women who reported that studying was their biggest stressor. Self-report of stress and anxiety symptoms was assessed with a standard questionnaire before and after four conditions over 4 days. The conditions were quiet rest, study, exercise, and studying while exercising. These conditions were counterbalanced across participants, and each condition was 40 minutes in duration. The “exercise only” condition had the greatest calming effect (5). When participants were not given a break from their stressor in the “studying while exercising” condition, exercise did not have the same calming effect.
Sensorimotor rhythm (SMR) is one final type of brainwave that has been studied. SMR, also known as low beta, is a type of brainwave, which occurs in the sensorimotor cortex, in the 12 to 15 hertz range when that area of the sensorimotor cortex is idle and immobile. The purpose of SMR brainwaves is not well understood, but some neurofeedback practitioners report training to increase SMR brainwaves can be beneficial for people with autism, epilepsy, ADD, insomnia, drug addiction, and as an aide to better manage stress.
We are very proud of our hard work and commitment to create HIGH quality Guided Meditations, Affirmation audios, Hypnosis sessions, Solfeggios and Relaxing Music. We put our Heart and Soul into every video we create with the intention to create something valuable for YOU, so you can walk the path of life feeling much more positive, conscious and empowered.
Meditations that cultivate mindfulness have long been used to reduce stress, anxiety, depression, and other negative emotions. Some of these practices bring you into the present by focusing your attention on a single repetitive action, such as your breathing or a few repeated words. Other forms of mindfulness meditation encourage you to follow and then release internal thoughts or sensations. Mindfulness can also be applied to activities such as walking, exercising, or eating.
Gaia Meditation Gamma programs are specifically designed to: stimulate cognitive functions, help for higher learning and greater focus, improve IQ, expand consciousness and inspiration. The Dalai Lama meditates 4 hours every morning, which must stimulate his Gamma activity in a tremendous way. However, even if you have never practiced meditation, our Gamma waves programs will take you easily and rapidly to the Gamma brain state.
Brainwave entrainment is a colloquialism for such 'neural entrainment', which is a term used to denote the way in which the aggregate frequency of oscillations produced by the synchronous electrical activity in ensembles of cortical neurons can adjust to synchronize with the periodic vibration of an external stimuli, such as a sustained acoustic frequency perceived as pitch, a regularly repeating pattern of intermittent sounds, perceived as rhythm, or of a regularly rhythmically intermittent flashing light.
×