Sensorimotor rhythm (SMR) is one final type of brainwave that has been studied. SMR, also known as low beta, is a type of brainwave, which occurs in the sensorimotor cortex, in the 12 to 15 hertz range when that area of the sensorimotor cortex is idle and immobile. The purpose of SMR brainwaves is not well understood, but some neurofeedback practitioners report training to increase SMR brainwaves can be beneficial for people with autism, epilepsy, ADD, insomnia, drug addiction, and as an aide to better manage stress.
Respectfully ask others to change their behavior. And be willing to do the same. Small problems often create larger ones if they aren't resolved. If you're tired of being the target of a friend's jokes at parties, ask him or her to leave you out of the comedy routine. In return, be willing to enjoy his or her other jokes and thank him or her for humoring you.
The Neuro Programmer website, as is typical, is full of testimonials and vague references to research. I tried to track down the research they referenced, but could not find anything published or peer-reviewed by the authors named or on the subjects indicated. For example, they cite one study by Thomas Budzynski, but the only thing published by him that is listed on Pub Med is a small study on biofeedback published in 1969. The 1999 study they reference is not listed. Also – Budzynski has connections to another company – Theta Technologies – which sells similar technology.  (The exact nature of his connection is not clear, he was at least a consultant. He is also listed as the director of research for another company, Synchromed, LLC.)  This looks like just another in-house worthless study to support the marketing of a product.
If you’re going to enter a state of meditation, a technique of some sort must be employed that takes you there. (Note – I am fully aware of references to “spontaneous enlightenment experiences”, but these are an entirely different category of phenomena than what is being discussed here and are outside the scope of this discussion. Perhaps another time.)
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication or have a medical condition.
It might seem obvious that you’€™d know when you’€™re stressed, but many of us spend so much time in a frazzled state that we’ve forgotten what it feels like when our nervous systems are in balance: €”when we’€™re calm yet still alert and focused. If this is you, you can recognize when you’re stressed by listening to your body. When you’re tired, your eyes feel heavy and you might rest your head on your hand. When you’re happy, you laugh easily. And when you’re stressed, your body lets you know that, too. Get in the habit of paying attention to your body’€™s clues.
♥ ← This set of tones with the bird calls from Aotearoa is keeping me awake while I finish an essay I've been working on for the past four days. Focus beats + sounds I associate with morning = wakefulness. Still craving the bed, but at least I'm not falling asleep at my desk. Thanks myNoise, without you I'd probably be listening to music and distracted.

Science shows that massages reduce stress, but you don’t have to go to the spa—you can give yourself one right now. “Learning how to self-massage your foot, head, neck, or shoulders reduces the stress hormone cortisol, boosts your immune system, and increases the feel-good hormones oxytocin, dopamine, and serotonin,” Dr. Serani says. You can even use a tennis ball or cold water bottle on your feet or neck. In addition, try rubbing pressure points like the webbing between your thumb and index finger, or your inner wrist. Another technique is the EFT tapping technique, literally tapping certain points on your body such as in between your eyes, your temples, and the center of your collarbone. “Tapping brings cleansing energy to the meridian points, as your mind directs the energy to what’s unbalanced in the body,” Whitaker says. “This restores your mind and body’s natural balance, which aids in releasing stress, worry, fears, and disharmony.”
Exercises improves insulin sensitivity, can help someone become more aware of their hunger levels, improves confidence/self-esteem, and leads to better mental processing and a lower risk for depression. (2) Can’t sleep? Well, exercise can help with that too, which is very important considering quality sleep is needed to regulate hormones and help the body recover.

They came to the table with the idea that the entrainment track would “cause” them to be in meditation, which it doesn’t. Or they thought that having the specific brainwaves the entrainment program promotes would “cause” them to be in meditation. It doesn’t. If you really understand the principles above, you’ll understand why. If you don’t grasp why yet, read these principles again and consider what they really mean. The answer is there.

When you play a tone with a slightly different frequency into your left and right ear — say, 200 hertz (Hz) in one and 210 Hz in the other — they travel separately to your inferior colliculus, the part of your brain that gathers auditory input. There, the tones “squelch” together into a so-called “beat” at a perceived new frequency. (In this case, it would be 10 Hz.)
Gamma brainwaves possess the highest frequency we know of. In this state, our brainwaves are so harmonious that many people report feeling elevated states of consciousness, even spiritual experiences. This frequency is often experienced by monks, nuns, yogis, and experienced meditators. Gamma frequencies also enhance memory, awareness, and mental processing.

A 2008 study at Hofstra University played two different binaural beats and a control sound (a babbling brook) to patients with high blood pressure. There was no difference between the groups. In one small study from Japan that was published in the Journal of Neurophysiology in 2006, they played various binaural beats to nine subjects, and observed the resulting EEGs. They found great variability in the results. Their conclusion was that listening to binaural beats can produce activity on the human cerebral cortex, however the cause was more likely a conscious auditory reaction and was not correlated to the frequency of the binaural beat. However, a 2005 study published in Clinical Neurophysiology found that they were able to induce a desired frequency in the EEG matching the phantom beat frequency encoded in a binaural beat, however this was with a single subject and was neither blinded nor controlled.

Jeffrey D. Thompson, D.C., B.F.A. Disclaimer: Nothing on this website is intended to diagnose, treat, cure or prevent any medical condition of whatever nature, and shall not be construed to mean medical advice, implied or otherwise. Information on this site is intended for educational edification and use only. © Coyyright 1988-2018 – Center for Neuroacoustic Research - All Rights Reserved.

Your brainwave activity during sleep is largely distinct from your brain activity when you’re awake. (REM sleep is one exception to this—during REM, your brain is active in ways very much like when you’re awake.) During non-REM sleep, the slower, lower frequency theta and delta waves dominate, compared to the alpha and beta waves that are prominent when you’re alert and active.
“The great neuroscientist W. Gray Walter carried out a series of experiments in the late forties and fifties in which he used an electronic stroboscopic device in combination with EEG equipment to send rhythmic light flashes into the eyes of the subjects at frequencies ranging from ten to twenty five flashes per second. He was startled to find that the flickering seemed to alter the brain-wave activity of the whole cortex instead of just the areas associated with vision. Wrote Walter, “The rhythmic series of flashes appear to be breaking down some of the physiologic barriers between different regions of the brain. This means the stimulus of flicker received by the visual projection area of the cortex was breaking bounds— its ripples were overflowing into other areas.”

Our products are gluten and dairy free. Most of our products are also free of soy and corn. The exception would be any formulas that contain cornsilk, including UTI Urinary, Growing Pains for Kids, Herbal Cal, and Kidney Strengthener. Catnip Oil Bug Spray contains soybean oil. Our Ear-Be-Well Ear Oil, Oh Baby! Oil, and Pregnant Belly Oil do contain almond oil.

Binaural beats can easily be heard at the low frequencies (< 30 Hz) that are characteristic of the EEG spectrum (Oster, 1973). This perceptual phenomenon of binaural beating and the objective measurement of the frequency-following response (Hink, Kodera, Yamada, Kaga, & Suzuki, 1980) suggest conditions which facilitate entrainment of brain waves and altered states of consciousness. There have been numerous anecdotal reports and a growing number of research efforts reporting changes in consciousness associated with binaural-beats. "The subjective effect of listening to binaural beats may be relaxing or stimulating, depending on the frequency of the binaural-beat stimulation" (Owens & Atwater, 1995). Binaural beats in the delta (1 to 4 Hz) and theta (4 to 8 Hz) ranges have been associated with reports of relaxed, meditative, and creative states (Hiew, 1995), and used as an aid to falling asleep. Binaural beats in the alpha frequencies (8 to 12 Hz) have increased alpha brain waves (Foster, 1990) and binaural beats in the beta frequencies (typically 16 to 24 Hz) have been associated with reports of increased concentration or alertness (Monroe, 1985) and improved memory (Kennerly, 1994).
You listen to binaural beats using headphones. In each ear, you receive sound at a slightly different frequency (often accompanied by some relaxing background sounds). If your left ear receives a 300-hertz tone and your right ear receives a 280-hertz tone, your brain will process and absorb a 10-hertz tone. That’s a very low-frequency soundwave—one you can’t actually hear. But you don’t need to hear the sound for your brain to be affected by it.
When you play a tone with a slightly different frequency into your left and right ear — say, 200 hertz (Hz) in one and 210 Hz in the other — they travel separately to your inferior colliculus, the part of your brain that gathers auditory input. There, the tones “squelch” together into a so-called “beat” at a perceived new frequency. (In this case, it would be 10 Hz.)
Controlled or pre/post studies of the effects of BWE using auditory or visual stimulation were eligible for inclusion, provided pulses of light or tone were delivered at frequencies hypothesised to have a beneficial effect or in line with a protocol addressing clinical outcomes. Studies were required to report clinical or psychological outcomes (measured using standard methods or as deemed appropriate by peer review) and to report statistical analysis. Studies of outcomes such as electroencephalogram (EEG) response or neurotransmitter levels were not eligible. Case studies were excluded.