When you're having a hell of a day—good or bad—checking out for 10-15 minutes is revitalizing. Find a place where you can be alone (and definitely ditch the cell phone)—the attic, the bathroom, a quiet cafe, a big oak tree—and wipe the slate clean for a few minutes. Do whatever it is that relaxes you: Meditate, read a novel, sing or sip tea. It's crucial to take just a few minutes everyday to de-stress. It's not how much time you allot, but being consistent that's important.
It cannot be any wonder then that we are almost desperate to find some sign, some indication that meditation and brainwave entrainment is having tangible, definable effects. We seize on these odd little experiences like ‘flushing of the face’ or ‘seeing spirals of color’ when our eyes are closed, hoping these are signs suggesting the elusive relief we’ve been after is finally within our grasp. We ask others to validate our experiences so that we can reassure ourselves we’re on the right track at last.
Brainwave entrainment is a field of study and endeavor founded in the same physiological and psychological processes that make music, drumming, and chanting so powerful as methods for transforming the mind and spirit and aiding in healing of the body. These processes involve how the electrical energy in our brains synchronizes with sounds and visual stimuli, producing a particular brainwave frequency and its associated mental states. 

Brainwaves, or neural oscillations, share the fundamental constituents with acoustic and optical waves, including frequency, amplitude and periodicity. Consequently, Huygens' discovery precipitated inquiry[citation needed] into whether or not the synchronous electrical activity of cortical neural ensembles might not only alter in response to external acoustic or optical stimuli but also entrain or synchronize their frequency to that of a specific stimulus.[16][17][18][19]
The functional role of neural oscillations is still not fully understood;[6] however they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory.[7][8][9] Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory.[10][11][12]
×