Why is exposure to these soundwaves helpful to sleep and relaxation? Science shows that exposure to binaural beats can create changes in the brain’s degree of arousal. Listening to these sounds that create a low-frequency tone, research indicates, triggers a slow-down to brainwave activity—and that may help you relax, lower your anxiety, and can make it easier for you to fall asleep and sleep more soundly.

Just as stress can increase the risk for chronic diseases and other health problems, dealing with chronic conditions and poor health can increase the amount of stress one experiences. Stress also influences behaviors that affect health. Diet choices, sleep habits, and drug use are behaviors that are often negatively affected by stress (3). The APA’s 2011 survey showed that 39% percent of respondents reported overeating or eating unhealthy food because of stress, and 29% reported skipping a meal (3). In addition, 44% reported lying awake at night because of stress (3). On a positive note, 47% of respondents reported walking or exercise as a way of managing stress (3).
You have three Theta options. First, you can begin with the 30 minute Alpha Light Meditation, then do the 30 minute Theta Deep meditation that is in the same folder with the Alpha track. This is the most gentle way to introduce yourself to the Theta meditations, as these two tracks are designed to work with each other. This Theta track must be used after the Alpha track, because it begins with the same frequency where Alpha ends.
Theta: This brainwave pattern is associated with deep relaxation and with some stages of sleep, including the lighter stages of non-REM (NREM) sleep. REM sleep itself is mostly composed of beta wave and other activity that’s similar to an alert, waking brain. Deep meditation produces theta waves, which are slower and lower frequency (between 5-8 hertz) than Alpha waves. That murky barrier between sleep and wakefulness, when you’re drifting in and out of sleep, and your thoughts feel dreamlike and difficult to remember? That’s a theta-dominant state of consciousness.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]