Research suggests the negative effects of stress on the body seem to be exaggerated in people who are inactive, a phenomenon called”stress-induced/exercise deficient” phenotype. Because we react to stress by experiencing changes in our neuro-endocrine systems, regular exercise is protective because it regulates various metabolic and psychological processes in the body, including reinforcing our natural circadian rhythms, sleep/wake cycles, moods and blood sugar levels.
All brainwave frequencies are useful and beneficial at certain times – there is no brainwave that is intrinsically better than another. However, by deliberately choosing to attain a particular brainwave state, a corresponding mental state can be brought about at the same time. For example, a working person who has been in an overly alert beta brainwave pattern for many hours can quickly shift their mind and body into a relaxed state by listening to a few minutes of brainwave entrainment music for inducing alpha or theta brainwaves.
Controversies concerning the brain, mind, and consciousness have existed since the early Greek philosophers argued about the nature of the mind-body relationship, and none of these disputes has been resolved. Modern neurologists have located the mind in the brain and have said that consciousness is the result of electrochemical neurological activity. There are, however, growing observations to the contrary. There is no neuro-physiological research which conclusively shows that the higher levels of mind (intuition, insight, creativity, imagination, understanding, thought, reasoning, intent, decision, knowing, will, spirit, or soul) are located in brain tissue (Hunt, 1995). A resolution to the controversies surrounding the higher mind and consciousness and the mind-body problem in general may need to involve an epistemological shift to include extra-rational ways of knowing (de Quincey, 1994) and cannot be comprehended by neuro-chemical brain studies alone. We are in the midst of a revolution focusing on the study of consciousness (Owens, 1995). Penfield, an eminent contemporary neurophysiologist, found that the human mind continued to work in spite of the brain's reduced activity under anesthesia. Brain waves were nearly absent while the mind was just as active as in the waking state. The only difference was in the content of the conscious experience. Following Penfield's work, other researchers have reported awareness in comatose patients (Hunt, 1995) and there is a growing body of evidence which suggests that reduced cortical arousal while maintaining conscious awareness is possible (Fischer, 1971;West 1980; Delmonte, 1984; Goleman 1988; Jevning, Wallace, & Beidenbach, 1992; Wallace, 1986; Mavromatis, 1991). These states are variously referred to as meditative, trance, altered, hypnogogic, hypnotic, and twilight-learning states (Budzynski, 1986). Broadly defined, the various forms of altered states rest on the maintenance of conscious awareness in a physiologically reduced state of arousal marked by parasympathetic dominance (Mavromatis, 1991). Recent physiological studies of highly hypnotizable subjects and adept meditators indicate that maintaining awareness with reduced cortical arousal is indeed possible in selected individuals as a natural ability or as an acquired skill (Sabourin, Cutcomb, Crawford, & Pribram, 1993). More and more scientists are expressing doubts about the neurologists' brain-mind model because it fails to answer so many questions about our ordinary experiences, as well as evading our mystical and spiritual ones. The scientific evidence supporting the phenomenon of remote viewing alone is sufficient to show that mind-consciousness is not a local phenomenon (McMoneagle, 1993).  
The use of brainwave entrainment techniques offers many benefits for overall health and well-being, including improved emotional stability, increased cognitive function, and a deepening of creative insight. Much of this benefit derives from the hemispheric synchronization occurring as a result of entrained brainwaves. This effect happens when the electrical impulses in both hemispheres synchronized to the same frequency being delivered through the entrainment source.
Thanks for the reply. I am now clearer on ‘what’ is heard. Can you expand or point me in direction ..a bit more about ‘pitch frequency’ and frequency spoken about and what exactly is the difference ..and how we use the higher pitch frequencies to ‘hear’ or become aware of them? Would you only pick up the low freq on a EEG?. sorry for being pedantic ..it still does not clear up split isochronics and possibly creating same situation as binaural beats..
Thanks to e-mail, cell phones, and BlackBerrys, it seems like your job never ends. The increasingly blurry boundaries between work and home life leave us with less downtime than ever before (and in some cases, no downtime!). Advances in technology are a leading source of chronic stress, putting many of us in a constant state of alert. Not to mention the effect it has on family ties. A recent study published in the Journal of Marriage and Family found a link between the use of cell phones and pagers at home and increased stress, which spills over into family life. To make technology work for you, screen calls with caller ID or, better yet, limit your cell phone and e-mail use to working hours only. Can't kick the BlackBerry habit? Set a regular time you'll check it in the evening (say, after dinner), so you're not constantly disrupting home life to keep tabs on work. (The one exception: using your device to breathe with this anxiety-reducing GIF.)

Different people have different requirements when it comes to frequency changes in the music and it's quite impossible for us to anticipate them all. We would need to produce so many different variants of all our music productions that it would be impractical to manage and confusing for our customers. For example, if we were to start raising the frequency from theta up to alpha between the 50-60 minute mark of a piece of music, this would be useless to someone who used the music for a guided meditation that was only 45 minutes long. In the early stages of the development of our brainwave entrainment music we had so many different requests from different people that we could only opt for the simplest solution, which is to use a consistent frequency throughout. It might not be the absolute "perfect ideal", but this is still a very effective technique and the feedback we've received on our brainwave entrainment music has always been exceptionally positive.

Beta brainwaves are further divided into three bands; Lo-Beta (Beta1, 12-15Hz) can be thought of as a 'fast idle', or musing. Beta (Beta2, 15-22Hz) is high engagement or actively figuring something out. Hi-Beta (Beta3, 22-38Hz) is highly complex thought, integrating new experiences, high anxiety, or excitement. Continual high frequency processing is not a very efficient way to run the brain, as it takes a tremendous amount of energy. 
The use of brainwave entrainment techniques offers many benefits for overall health and well-being, including improved emotional stability, increased cognitive function, and a deepening of creative insight. Much of this benefit derives from the hemispheric synchronization occurring as a result of entrained brainwaves. This effect happens when the electrical impulses in both hemispheres synchronized to the same frequency being delivered through the entrainment source.
With its focus on full, cleansing breaths, deep breathing is a simple yet powerful relaxation technique. It’s easy to learn, can be practiced almost anywhere, and provides a quick way to get your stress levels in check. Deep breathing is the cornerstone of many other relaxation practices, too, and can be combined with other relaxing elements such as aromatherapy and music. While apps and audio downloads can guide you through the process, all you really need is a few minutes and a place to stretch out.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×