The authors concluded that preliminary evidence suggested that brainwave entrapment was an effective therapeutic tool, but further research was required. The evidence presented appeared to justify the recommendation for further research. In view of the lack of controlled evidence and problems with methodology and reporting in the review, the authors’ conclusions regarding efficacy did not appear reliable.

... One of the possible explanation for insignificant results could be length of exposure to AVS. Our participants were exposed to it for 11 minutes, while some authors (Cruceanu & Rotarescu, 2013) suggest that at least 20 minutes is needed for the positive effects to take place. Furthermore, part of our reserach was also visualization of gymnastic skills, performed after AVS. ...
I have a strange reaction to Binaural beats, as well as isochronic beats, and anything similar. After listening, I often feel vey fatigued, nauseous, and sometimes quite depressed. This effect can last a few days. So I stay away from it now, as well as guided meditations that have such beats in the background. Have you heard of this kind of reaction before?
Theta: This brainwave pattern is associated with deep relaxation and with some stages of sleep, including the lighter stages of non-REM (NREM) sleep. REM sleep itself is mostly composed of beta wave and other activity that’s similar to an alert, waking brain. Deep meditation produces theta waves, which are slower and lower frequency (between 5-8 hertz) than Alpha waves. That murky barrier between sleep and wakefulness, when you’re drifting in and out of sleep, and your thoughts feel dreamlike and difficult to remember? That’s a theta-dominant state of consciousness.
Binaural beats are pretty simple. Basically, you take two frequencies that are similar and play each one through it’s own stereo headphone. The two competing frequencies will work together in your mind to produce a pulsing. That pulse will be a certain frequency that corresponds to a number in hertz that is linked to what your brain produces when you are in certain states of consciousness.

The I-Doser claims it can emulate prescription drug-like effects by listening to MP3's, to get stoned.[1] This is largely a moral panic by parents who flunked science fueled by the eternal quest by teenagers to get stoned, and stupid ones convincing their friends it works. It is really more of wishful thinking and making yourself disoriented by playing discordant sounds really damn loud. If you want to experience it yourself, you can always listen to Bjork Captain Beefheart dubstep.

Although there is a general stress response pattern, there can be variations in the response according to the characteristics of the stressor (10). Individuals tend to respond differently based on the familiarity of the stressor. For example, the perceived level of stress and physiological response when giving a presentation to a group of work colleagues will likely be less than when presenting to an unfamiliar group. The stress response also varies depending on the level of perceived control one has over the stressor (10). If there is a way for one to actively cope with the stressor that is reasonable, then the individual usually perceives more control over the situation. Consider an individual who has to take a certification examination for work and has 6 months to prepare. He can adjust his schedule to accommodate study time. However, waiting for medical test results that show whether one has a serious illness does not allow a sense of control over the stressor, and the individual passively endures the stressor or may try to avoid the stressor. With this uncontrollable type of stressor, there is a more negative reaction with greater productions of cortisol, which can have damaging health effects because of the suppression of immune function (10).
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]