Gaia Meditation Delta programs are specifically designed to: improve sleep and healing process. Effects happen at a very deep subconscious level, ideal for powerful reprogramming. If you’re in lack of sleep because you’re a busy business man or because you have insomnia etc., a few hours of our Delta waves programs will trick your brain into thinking it had all the restorative sleep it needs.
It cannot be any wonder then that we are almost desperate to find some sign, some indication that meditation and brainwave entrainment is having tangible, definable effects. We seize on these odd little experiences like ‘flushing of the face’ or ‘seeing spirals of color’ when our eyes are closed, hoping these are signs suggesting the elusive relief we’ve been after is finally within our grasp. We ask others to validate our experiences so that we can reassure ourselves we’re on the right track at last.
Move your focus to the sole of your right foot. Tune in to any sensations you feel in that part of your body and imagine each breath flowing from the sole of your foot. After one or two minutes, move your focus to your right ankle and repeat. Move to your calf, knee, thigh, hip, and then repeat the sequence for your left leg. From there, move up the torso, through the lower back and abdomen, the upper back and chest, and the shoulders. Pay close attention to any area of the body that causes you pain or discomfort.
Binaural beats are an auditory illusion where two oscillators, slightly detuned from each other, are played simultaneously with one perceived by each ear. The human brain mixes the audio from each ear, and the listener perceives a "beating" effect that isn't actually there. This is a well-studied phenomenon that has gained the interest of audiologists and neurologists, but it's most famous for being picked up by the alternative medicine community as a way to get high.
Regarding split hemisphere isochronic tones. Think of this as two separate isochronic tones tracks playing independently of each other, one playing in one ear and the other one in the opposite ear. Better still, imagine someone playing and recording a drum beat at a rate of 5 taps per second (5Hz – 5 cycles per second). Then a separate recording of a drum beat is made at a rate of 10 taps per second (10 Hz). You then make an audio track where the left ear/channel hears the 5 drum beats recording and the right ear/channel hears the 10 beat recording. With headphones on, each ear can only hear each respective drum beat and not the other. So you are hearing two different beat recordings at the same time, but it’s different in each ear. A split hemisphere isochronic tones track works just the same. You hear two beats at the same time, not two tones as with binaural beats that create a single beat, but two different speeds of beats in each ear. This is what enables you to stimulate and influence each side of the brain with a different frequency of beat. Binaural beats can only stimulate and influence a whole brain effect using a single beat.

The most common way to use a brainwave entrainment is for a short-term benefit, to help guide your brain into a particular mental state at the time you need it.  In a similar way to how you might take a sleeping pill before bed to help you get to sleep, or maybe drink some coffee or an energy drink to help wake you up and give you a boost of energy.
After fixation upon our phenomenon takes place, what started out as a random perception is now cemented into our experience of, and is conditionally associated with entrainment. We condition ourselves to relive the same experience associated with entrainment each time we use it. It isn’t random any longer. It is explicit conditioning, and it repeats as predictably as the sunrise using entrainment as its new trigger.
CBT focuses on challenging and changing your thoughts first and foremost, since the way you perceive an event (not the actual event itself) means everything in terms of how your body reacts. (10) Once you can identify the root thought pattern that is causing harmful behaviors, you can work on changing how you think about events and therefore react to them.
Fortunately, the recommendations for exercise in the role of stress management fit with the current health recommendations (12). The proposed physiological adaptations thought to improve the way the body handles stress and recovers from stress can occur with a regular moderate to vigorous aerobic exercise program (12,13,16), such as the recommendations of 150 minutes of moderate-intensity aerobic exercise per week or 75 minutes of vigorous-intensity aerobic exercise per week. If an individual is using exercise as a time-out from stressors, shorter duration activity can serve the purpose, especially when lack of time or fatigue is a concern. Consider an individual who reports significant work-related stress. Breaking the exercise into two 10- to 15-minute sessions, one before work and one at lunch time when possible, can help combat stress throughout the day. Although there is not a lot of research with resistance exercise and stress management, resistance exercise can be used to provide a time-out from one’s stressors. Because resistance training produces different exercise adaptations compared with aerobic exercise, it might not affect the way the body physiologically reacts to stress as aerobic exercise does. However, the acute effect of a time-out to reduce stress can be beneficial. In addition, clients can receive the numerous health benefits associated with resistance training. The resistance exercise prescription for general health benefits of 2 to 3 days of exercise to target all of the major muscle groups performed at a moderate intensity of 8 to 12 repetitions can be recommended.
Building on guided imagery, you can also imagine yourself achieving goals like becoming healthier and more relaxed, doing well at tasks, and handling conflict in better ways. Also, visualizing yourself doing well on tasks you’re trying to master actually functions like physical practice, so you can improve your performance through ​​visualizations as well.
This blog was created from an interview with Joseph Kao, creator of iAwake’s Journey to the Center of the Self, and iAwake’s CEO John Dupuy, by Heidi Mitchell, who has been working with John for 11 years as assistant and editor. John introduced her to Integral theory and practice and brainwave entrainment enhanced meditation in 2007. Heidi is also a freelance editor of nonfiction books, blogs, and web sites. She can be reached at www.heidimitchelleditor.com.
Binaural beats change the frequency of your brainwaves, giving you control over which category you experience at any given moment. And because you’re in the driver’s seat — and producing specific frequencies to induce a specific state of mind — you can use binaural beats to boost performance, increase focus, get better sleep… the possibilities are endless. “There’s an infinite number of variations on how you could use this kind of technology,” says Bill Harris, Director of Centerpointe Research Institute and creator of auditory brainwave training program Holosync.
2. The other thing you cannot afford to do is evaluate whether or not a technique is having an effect based upon having (or not having) any of those superficial, irrelevant, distracting phenomena discussed above, like face flushing, seeing light swirls, having sensations of this, that or the other thing, etc. Those kinds of phenomena will just lead you down the wrong path and steer you away from the true benefits of meditation. If you’ve already fallen into the trap of this sort of conditioning, using something like the Release Technique, the Sedona Method, or even EFT can be helpful in breaking established conditioned associations.
There are differences between high (over 18 hertz), mid (15 to 18 hertz), and low range beta states (12 to 15 hertz). Low beta states are more relaxed while still being focused, making this a good range for many daily work related tasks like balancing a checkbook, making a shopping list, or driving to a new place. However, people with attention deficit disorder lack the mental focus for doing these types of activities, and studies have found people with ADD are often low in this range of beta brainwaves.

For example, if a 530 Hz pure tone is presented to a subject's right ear, while a 520 Hz pure tone is presented to the subject's left ear, the listener will perceive the auditory illusion of a third tone, in addition to the two pure-tones presented to each ear. The third sound is called a binaural beat, and in this example would have a perceived pitch correlating to a frequency of 10 Hz, that being the difference between the 530 Hz and 520 Hz pure tones presented to each ear.


Hi Et, In all the feedback and studies I’ve read and looked into over the years, I’ve seen lots of feedback from people talking about how they don’t like the sound of the tones, or they find them irritating in some way. Unfortunately, there doesn’t seem to be any particular reason why one person likes it and the next doesn’t. It’s a bit like normal music, one person’s sweet symphony is another person pneumatic drill. It’s common for people to find it weird and maybe annoying at first, which is how I felt in the beginning. But usually after a few listens you can start to get used to it and appreciate the sound, and especially the feeling it gives you. Personally, I think it can help if you try to embrace the sound, psychologically speaking beforehand. It can also help to have the sound playing at a very low volume, to begin with, then building it up as you get more used to it.

The pitch frequency measures and describes what a beat sounds like, i.e. does the isochronic beat have a deeper bass sound, or is it high pitched and sharper sounding? The beat waveform frequency describes how many times the beat is repeating per second, i.e. how fast it is beating. You don’t really need to concern yourself about the pitch frequency, as that doesn’t have a direct influence on brainwave entrainment and doesn’t play a part on the measurement on an EEG. I only mentioned it because you were referring to humans not being able to hear below 20Hz. I change the pitch frequency just to suit the mood of the track. For tracks that are to be relaxing, for meditation or sleep, I tend to use a lower pitch frequency so it sounds deeper and more relaxing and I never have that lower than 100Hz. For an energizing, high focus track I might use a more higher pitched 200Hz isochronic tone, because that is sharper sounding and less likely to make you feel sleepy. That’s all you really need to know about the pitch frequency.

One faulty expectation as it pertains to brainwave entrainment is that listening to an entrainment track is the same as meditating. If you’ve understood the principles so far as they’ve been laid out you understand why this idea is completely untrue. If the answer is not yet obvious to you, read the material covering these principles again and try to grasp their meaning.
Basically, "two ears." One usage of the word is "binaural recording," which is a form of stereo recording meant to take advantage of the spatial perception of the human ear. Recordings are usually done using a pair of microphones mounted to a dummy head with roughly accurate models of the human outer ear, and the result when played back through headphones is extremely realistic and comparable to surround sound, though following an entirely different recording model. Binaural recordings aren't woo at all, and have nothing to do with binaural beats.[citation needed]
Well … to understand the role entrainment plays in meditation, think of a water pump. Most of you have lived in areas where you have access to city water. You turn the knob on the tap, water comes out, end of story. If you grew up like I did, on a farm with a local well, then you probably know that in order to get the water flowing from a well you must first “prime the pump”. (Those of you who remember the days when cars all had carburetors rather than fuel injectors might also remember running out of gas and needing to prime the carburetor with a little gasoline. It’s the same principle.)

Resonant entrainment of oscillating systems is a well-understood principle within the physical sciences. If a tuning fork designed to produce a frequency of 440 Hz is struck (causing it to oscillate) and then brought into the vicinity of another 440 Hz tuning fork, the second tuning fork will begin to oscillate. The first tuning fork is said to have entrained the second or caused it to resonate. The physics of entrainment apply to bio-systems as well. Of interest here are the electromagnetic brain waves. The electrochemical activity of the brain results in the production of electromagnetic wave forms which can be objectively measured with sensitive equipment. Brain waves change frequencies based on neural activity within the brain. Because neural activity is electrochemical, brain function can be modified through the introduction of specific chemicals (drugs), by altering the brain's electromagnetic environment through induction, or through resonant entrainment techniques.
Beta waves are the most common and most prevalent in the brain. These are the brain waves of alertness, dominating your normal waking state of consciousness. The Beta state relates to “fast” activity with neurons firing abundantly, in rapid succession, with attention focused directly towards cognitive tasks and the outside world. Beta activity is engaged in focused mental activity, problem solving, judgment and decision making. New ideas and solutions to problems flash like lightning into your mind.
Most of our Royalty Free brainwave entrainment music uses an audio technology known as "binaural beats". These binaural beats are embedded in the music in order to bring about desirable changes in brainwave activity, thereby encouraging various states of relaxation, deep meditation or sleep. When played with headphones, you may be able to hear the binaural beats as a subtle pulsing sound beneath the music.
Gamma waves are the fastest brainwave frequency range. Gamma brain waves are believed to link and process information from all other parts of the brain. A high amount of gamma wave activity in the brain is associated with intelligence, compassion, focus and feelings of happiness. High levels of gamma brain waves have also been linked to improved memory and an increased sensitivity to sensory input. Low amounts of gamma brainwave activity have been linked to learning difficulties, poor memory and impaired mental processing.
The advice “take a deep breath” may seem like a cliché, but it holds true when it comes to stress. For centuries, Buddhist monks have been conscious of deliberate breathing during meditation. For an easy three- to five-minute exercise, sit up in your chair with your feet flat on the floor and hands on top of your knees. Breathe in and out slowly and deeply, concentrating on your lungs as they expand fully in your chest. While shallow breathing causes stress, deep breathing oxygenates your blood, helps center your body, and clears your mind.
Sleep and stress tend to cause a vicious cycle – if you’re stressed, then you can’t sleep, which makes you ill-prepared to handle the stressors of the next day, leading to more stress. To relieve stress before bed, try some relaxation techniques (see below) and disconnect from technology as much as possible an hour before bedtime. To ensure the proper amount of rest (7-8 hours is recommended), set an alarm reminding you to go to bed.
There are five main categories of brainwave frequencies: Gamma (40Hz+), Beta (13 – 40Hz), Alpha (7 – 13Hz), Theta (4 – 7Hz), and Delta (<4Hz). Each category is associated with a different state of mind; so, for example, when you’re in a peak state of performance, your brain produces Alpha Waves, and when you’re in a deep sleep, your brain produces Delta Waves.
^ Bittman, B. B., Snyder, C., Bruhn, K. T., Liebfreid, F., Stevens, C. K., Westengard, J., and Umbach, P. O., Recreational music-making: An integrative group intervention for reducing burnout and improving mood states in first year associate degree nursing students: Insights and economic impact" International Journal of Nursing Education Scholarship, Vol. 1, Article 12, 2004.
×