The mechanism for this is that when your eyes or ears are exposed to a particular frequency of pulses or beats, the thalamus first distributes this information to the entire brain, including the visual and cerebral cortex where neural activity begins to synchronize to the incoming frequency, producing hemispheric synchronization and a balance of brainwave activity across the brain.
With almost 100 years of research validating the effectiveness of brainwave entrainment, it’s no wonder why it’s used by thousands of people all over the world. What does the future entail in this exciting field? With the adoption of smartphones, virtual and augmented reality, and advancements in technology reducing the cost of EEG and other forms of biofeedback devices, the entrainment possibilities are endless.
There are various reasons we seek this sort of validation. Many of us first try meditation to find relief from all sorts of different problems. Some seek relief from physical or emotional ailments; for solutions to personality shortcomings, such as a short temper or a tendency towards jealousy, etc. Some problems may be quite serious, even life threatening. Our search for relief may have been going on for a very long time without having found exactly what we were searching for.

Beta brainwaves are typically those we experience when we are wide awake and full of energy. You can think of this frequency as the equivalent of taking stimulants like caffeine, Adderall, or various nootropics. The Beta frequency is good for generating a concentrated, focused, and analytical mind. In fact, the brainwave you probably possess while reading this is of the Beta frequency.
Today we're going to put on our headphones, kick back in the beanbag, and get mellow to the soothing sounds of the latest digital drug: binaural beats. These computer generated sound files are said to massage your brain and produce all sorts of effects, everything from psychedelic experiences to behavior modification. Let's point our skeptical eye at the science of binaural beats, and especially at some of the claims made for them.

Theta waves also have been observed in moments when a person recalls information from the past, and this may be what links them also to improvement in learning ability. We also experience theta waves when we go into automatic pilot mode, such as when doing a repetitive task like driving a familiar route where the mind become disconnected while you still drive safely toward your destination.

When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience.

Controversies concerning the brain, mind, and consciousness have existed since the early Greek philosophers argued about the nature of the mind-body relationship, and none of these disputes has been resolved. Modern neurologists have located the mind in the brain and have said that consciousness is the result of electrochemical neurological activity. There are, however, growing observations to the contrary. There is no neuro-physiological research which conclusively shows that the higher levels of mind (intuition, insight, creativity, imagination, understanding, thought, reasoning, intent, decision, knowing, will, spirit, or soul) are located in brain tissue (Hunt, 1995). A resolution to the controversies surrounding the higher mind and consciousness and the mind-body problem in general may need to involve an epistemological shift to include extra-rational ways of knowing (de Quincey, 1994) and cannot be comprehended by neuro-chemical brain studies alone. We are in the midst of a revolution focusing on the study of consciousness (Owens, 1995). Penfield, an eminent contemporary neurophysiologist, found that the human mind continued to work in spite of the brain's reduced activity under anesthesia. Brain waves were nearly absent while the mind was just as active as in the waking state. The only difference was in the content of the conscious experience. Following Penfield's work, other researchers have reported awareness in comatose patients (Hunt, 1995) and there is a growing body of evidence which suggests that reduced cortical arousal while maintaining conscious awareness is possible (Fischer, 1971;West 1980; Delmonte, 1984; Goleman 1988; Jevning, Wallace, & Beidenbach, 1992; Wallace, 1986; Mavromatis, 1991). These states are variously referred to as meditative, trance, altered, hypnogogic, hypnotic, and twilight-learning states (Budzynski, 1986). Broadly defined, the various forms of altered states rest on the maintenance of conscious awareness in a physiologically reduced state of arousal marked by parasympathetic dominance (Mavromatis, 1991). Recent physiological studies of highly hypnotizable subjects and adept meditators indicate that maintaining awareness with reduced cortical arousal is indeed possible in selected individuals as a natural ability or as an acquired skill (Sabourin, Cutcomb, Crawford, & Pribram, 1993). More and more scientists are expressing doubts about the neurologists' brain-mind model because it fails to answer so many questions about our ordinary experiences, as well as evading our mystical and spiritual ones. The scientific evidence supporting the phenomenon of remote viewing alone is sufficient to show that mind-consciousness is not a local phenomenon (McMoneagle, 1993).  
Because the brain filters and interprets reality in a split-brained way, we tend to see things as separate and opposed, rather than as connected and part of the oneness spoken of by the great spiritual teachers (and, in the last few decades, by quantum mechanical physicists). Thus, at a deep level, the dual structure of our brain, in conjunction with brain lateralization, predisposes us to see and experience ourselves as separate from, and often in opposition to, the rest of the world—instead of experiencing the elegant interconnectedness between us and everything else. Our childhood associations and programming build on this inborn tendency by training us to seek this and avoid that, to move toward pleasure and away from pain, to do good and not bad, and so on. The greater the lateralization in the brain, the greater the feelings of separation—and the greater the feelings of separation, the greater the fear, stress, anxiety, and isolation.
“In order to get into a flow state, you have to calm a part of the brain, the posterior cingulate cortex, which is the source of what brain scientists call the default state, which is the non-focused state,” says Harris. “At any rate, it turns out that Holosync [binaural beats], when you listen to it, [calms that part of the brain] and so does traditional meditation. It’s just Holosync does it faster and more easily and more effortlessly. It turns down the posterior cingulate cortex and it enhances the other part of the brain that, when it’s enhanced, you can easily go into a flow state.”
The activity of neurons generate electric currents; and the synchronous action of neural ensembles in the cerebral cortex, comprising large numbers of neurons, produce macroscopic oscillations. These phenomena can be monitored and graphically documented by an electroencephalogram (EEG). The electroencephalographic representations of those oscillations are typically denoted by the term 'brainwaves' in common parlance.[4][5]