Resonant entrainment of oscillating systems is a well-understood principle within the physical sciences. If a tuning fork designed to produce a frequency of 440 Hz is struck (causing it to oscillate) and then brought into the vicinity of another 440 Hz tuning fork, the second tuning fork will begin to oscillate. The first tuning fork is said to have entrained the second or caused it to resonate. The physics of entrainment apply to bio-systems as well. Of interest here are the electromagnetic brain waves. The electrochemical activity of the brain results in the production of electromagnetic wave forms which can be objectively measured with sensitive equipment. Brain waves change frequencies based on neural activity within the brain. Because neural activity is electrochemical, brain function can be modified through the introduction of specific chemicals (drugs), by altering the brain's electromagnetic environment through induction, or through resonant entrainment techniques.
The Frequency following response (FFR), also referred to as Frequency Following Potential (FFP), is a specific response to hearing sound and music, by which neural oscillations adjust their frequency to match the rhythm of auditory stimuli. The use of sound with intent to influence cortical brainwave frequency is called auditory driving,[39][40] by which frequency of neural oscillation is 'driven' to entrain with that of the rhythm of a sound source.[41][42]
For our ancestors, stress was a survival skill during brief, life threatening situations. Once the danger passed, their stress levels lowered. However, in today’s world, we are constantly bombarded by stressors, such as work deadlines, traffic, and family obligations. We rarely get a break long enough to relax and relieve the stress. The over-activation of our stress hormones have been linked to high blood pressure, heart attacks, lower immunity, depression, anxiety, and more.
The phenomena of brainwave entrainment was first described in the scientific literature in 1973 by Gerald Oster in results published in an article in Scientific American entitled, “Auditory Beats in the Brain”. He showed that a specific brainwave could be induced when a person heard two separate, but closely related, sound frequencies, one in each ear. He discovered that when the frequencies heard by each ear differed by about 10 hertz, the brainwave pattern of the person hearing the sound would synchronize to the difference between the two frequencies. For example, if the person heard a 410 hertz sound in one ear and a 400 hertz sound in the other ear, their brainwaves would stabilize at the difference between the two, or 10 hertz. This technique is called binaural beats, and it is a fundamental principle of brainwave entrainment methods.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×