The various mental states of the individual are thought to take place across a varied range of frequencies, or brainwaves. By encouraging the frequency following process, entrainment is able to create positive change in the brain, through matching carefully-selected frequencies of light and/or sound. The stimulus enables the individual to access a different state of consciousness, which can be useful for a number of benefits including relaxation, anxiety management, stress reduction and more.
In addition to understanding how exercise can help manage stress and the types of exercise to recommend for stress management, it is important to understand common barriers that might affect exercise participation in high-stress clients. Lack of time is the most commonly reported exercise barrier for individuals in general. A lack of motivation, fatigue, poor sleep habits, and poor dietary habits are factors associated with stress that can negatively impact exercise compliance and adherence (4). Common exercise barriers and stress-related health problems should be taken into consideration when developing an exercise prescription for high-stress individuals.
Nothing is more stressful than being unprepared. Get organized so you're ready for the next day, taking a few minutes to make a to-do list and clean up before you leave. Knowing you've got everything covered means you'll be less likely to fret about work in the evenings. When you come in the next morning, you'll have the sense that you're in control of the situation and can handle it. This sets a positive tone for the day, which can help you get more accomplished. (You can even turn your nightly beauty routine into a stress-relieving practice.)
Most of all, don't feel bad if you fall asleep. Your brain is still receiving many of the benefits of entrainment while you sleep through the audio tracks. In fact, many people report better, more restful sleep when they use brainwave entrainment to help them fall asleep. However, I recommend that you do not go to sleep with your brainwave track set to repeat, as that can be too much stimulation for the brain.

Alpha: Alpha brainwave patterns are associated with a state of wakeful relaxation. Slower and lower in frequency (between 9-14 hertz), alpha waves are dominant when we’re calm and relaxed, but still alert. Alpha waves are associated with states of meditation (your yoga class probably puts you in an alpha state), and also with our ability to be creative.

, that is, the average of the two frequencies. It can be noted that every second burst in the modulation pattern is inverted. Each peak is replaced by a trough and vice versa. However, because the human ear is not sensitive to the phase of a sound, only its amplitude or intensity, only the magnitude of the envelope is heard. Therefore, subjectively, the frequency of the envelope seems to have twice the frequency of the modulating cosine, which means the audible beat frequency is:[5]
Joe:             The Journey  soundscape took a lot of work. I wanted to bring in the very best of what I knew about brainwave entrainment and to make the best brainwave entrainment product—with the best entrainment technology—that I possibly could. So, there are all sorts of things going on in Journey  to provide a sound bed to support the experience of expansiveness and also communicate elements of the heart-based work I talked about earlier. (See part I of this interview, A Guide to Transpersonal Meditation.)
Theta brainwaves in the frequency range of 6 to 9 hertz are known as thalpha waves because of their proximity to alpha waves. They are seen during states of high suggestibility, during hypnosis, and during paranormal experience and are also connected to an increase in human growth hormone (HGH) levels and higher blood flow to the brain. Theta brainwaves sit between the realms of the subconscious and conscious mind, making them an especially useful brainwave state for developing creative thinking, working through emotional problems, and integrating subconscious and conscious experience. 
Brainwaves, or neural oscillations, share the fundamental constituents with acoustic and optical waves, including frequency, amplitude and periodicity. Consequently, Huygens' discovery precipitated inquiry[citation needed] into whether or not the synchronous electrical activity of cortical neural ensembles might not only alter in response to external acoustic or optical stimuli but also entrain or synchronize their frequency to that of a specific stimulus.[16][17][18][19]