Living in a Mindful Universe relates the emerging view of consciousness that is revolutionizing the scientific community, and is, in many ways, the continuation of Dr. Alexander’s journey since writing Proof of Heaven. This journey parallels an unprecedented shift in the western scientific paradigm that, when fully incorporated, will lead to far more meaning and purpose in our lives.
Whenever we become very relaxed and the usual chatter of the mind slows down a little bit, if we remain aware and do not slip into sleep or unconsciousness, we begin to perceive things that we had not noticed before. This is slightly different than the issue of “expectations” discussed previously, although a relationship to them can develop which will be discussed below. These have to do with the fact that in our typical state of consciousness our mind is racing so fast and so loud, and our body is so engaged with activity and physical tension, that we are unaware of some subtle perceptions that are there all the while, but which get buried beneath all the physical and mental noise.
15. Melville GW, Chang D, Colagiuri B, Marshall PW, Cheema BC. Fifteen minutes of chair-based yoga postures or guided meditation performed in the office can elicit a relaxation response. Evid Based Complement Alternat Med [Internet]. 2012 [cited 2012 June 27]; Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265094/?tool=pubmed. doi:10.1155/2012/501986.
A more extensive study of over 100 participants who were undergoing general anesthesia for a day procedure, reported a decrease in pre-operative anxiety. The participants in this study listened to 30 minutes of binaural beats before surgery, but the researchers noted that people experiencing high levels of pre-operative anxiety could listen to binaural beats for up to 1 hour before anesthesia to reduce levels of anxiety.
By the 1980s, entrainment technology had merged with advancements in microelectronics technology, making it possible to develop even more sophisticated audio and visual brainwave entrainment products for the marketplace. In the last two decades, a number of scientific studies have reported brainwave entrainment as an effective remedy for ADD, academic learning problems, and improving memory and cognition.
Doing almost any routine, repetitive activity (like vacuuming, shredding paper or knitting), or reciting a word that represents how you wish you felt (such as calm) is a quick way to achieve a Zen-like state. Studies show the effects lower blood pressure and slow heart rate and breathing. The crucial elements are to focus on a word, your breathing or a movement and to bring your attention back to your task if your mind wanders or negative thoughts intrude. Or look to your faith for a mantra: A recent study published in the Journal of Advanced Nursing found that repeating phrases with spiritual meanings helped participants cope with a range of problems, from anxiety to insomnia.
♥ I'm a tired law student always looking for a study boost. I like to put on the Alpha waves and mix this with classical music for research and writing. The "beats" help to drive the music and add a feeling of focus and energy even during slower/softer passages. If you get the levels matched properly, you never even hear them. Throw in a cup of coffee and you'll be ready to save the world. Cheers!
Most programs start at a work/life busy brain Beta frequency of twenty light flashes per second (20Hz) and slowly ramp them down to Alpha (relaxation and meditation) at 8-12 HZ, Theta (deep relaxation and dreaming) at 4-8 Hz) and Delta (dreamless deep relaxation) of .5-4Hz. We have taken measurements at Mass General with state of the art EEG equipment and have seen a slowing of the brain waves from Beta to Theta in two minutes and complete brain wave harmonization in the left, right, anterior, posterior and occipital regions of the brain.

When your thoughts start to spin out of control during a stressful moment, stop and reframe your thinking. “By your choice of perspective, you direct how your body will respond—in fight or flight, or in creative choices and solution-based responses,” says Lauren E. Miller, stress relief and personal excellence expert and the author of 5 Minutes to Stress Relief. If you’re stressed about something you fear happening, such as “I’m not going to get this project done and then my boss will fire me,” think instead of what a great opportunity it is to show your boss you’re a hard worker. “Resist the urge to cast yourself as the main character in dramas that have not even occurred,” Miller says. Also, instead of asking why something is happening, ask what you can do to fix it. “Asking ‘why’ pitches you in an endless loop of questions, whereas asking ‘what’ sets you into problem-solving mode,” says Deborah Serani, PsyD, award-winning author of Living with Depression and a psychology professor at Adelphi University. “Moving forward instead of being lost in the circle of worries and “whys” helps to reduce stress.” Try these simple mindfulness stress relievers.


Beta brainwaves are next highest in frequency after alpha waves, occurring at 13 to 30 hertz. Beta brainwaves are what we experience every day as we are awake and using our analytic mind. Beta brainwaves are needed for concentrating on mental tasks, and when they are present for too long of a time, they lead to stress, anxiety, and even paranoia. Most people do not have trouble achieving beta brainwaves and in fact suffer from spending too much time in beta brainwave patterns. However, those with attention deficit disorder (ADD) who have problems focusing their attention can benefit from learning how to achieve and remain in beta brainwave states for longer amounts of time.

Controlled or pre/post studies of the effects of BWE using auditory or visual stimulation were eligible for inclusion, provided pulses of light or tone were delivered at frequencies hypothesised to have a beneficial effect or in line with a protocol addressing clinical outcomes. Studies were required to report clinical or psychological outcomes (measured using standard methods or as deemed appropriate by peer review) and to report statistical analysis. Studies of outcomes such as electroencephalogram (EEG) response or neurotransmitter levels were not eligible. Case studies were excluded.
This research investigates the brainwave entrainment process and aims to demonstrate the usefulness of such an approach within the framework of cognitive performance improvements. In the introductory part the theories regarding the neurophysiological structure and the psychological processing of the cognitive system are discussed, for each of their components that are considered to be relevant for this research. The hypothesis states that the stimulation with binaural beats and stroboscopic light, synchronized at 10.2 Hz frequency, will produce a positive change in cognition. The research variables are the cognitive performance (the dependent variable) and the brainwave entrainment (the independent variable). The brainwave entrainment program consists in the synchronized application of Alpha binaural beats and stroboscopic light, at a 10.2 Hz frequency, in a 30 minutes long session. The difference was made by the stroop effect based exercise that was used as a frame. There were 60 participants, divided into two independent samples. The two independent samples t test for the means differences was used in the statistical analysis. The obtained results by evaluations and by statistics confirmed this research's hypothesis, stating that the stimulation with binaural beats and stroboscopic light, synchronized at 10.2 Hz frequency, will produce a positive change in cognition.
In the 1980s, a researcher in Japan, Tsuyoshi Inouye described how light stimulation creates synchronization of brain hemispheres. Since then, other researchers have detailed the positive effects of hemispheric synchronization including a 1984 study by researcher Dr. Gene W. Brockopp stating that hemispheric synchronization resulted in improved intellectual functioning as well as improvements in long-term memory, and these effects are cumulative over time.
Binaural beats were discovered in 1839 by a German experimenter, H. W. Dove. The human ability to "hear" binaural beats appears to be the result of evolutionary adaptation. Many evolved species can detect binaural beats because of their brain structure. The frequencies at which binaural beats can be detected change depending upon the size of the species' cranium. In the human, binaural beats can be detected when carrier waves are below approximately 1000 Hz (Oster, 1973). Below 1000 Hz the wave length of the signal is longer than the diameter of the human skull. Thus, signals below 1000 Hz curve around the skull by diffraction. The same effect can be observed with radio wave propagation. Lower-frequency (longer wave length) radio waves (such as AM radio) travel around the earth over and in between mountains and structures. Higher-frequency (shorter wave length) radio waves (such as FM radio, TV, and microwaves) travel in a straight line and can't curve around the earth. Mountains and structures block these high-frequency signals. Because frequencies below 1000 Hz curve around the skull, incoming signals below 1000 Hz are heard by both ears. But due to the distance between the ears, the brain "hears" the inputs from the ears as out of phase with each other. As the sound wave passes around the skull, each ear gets a different portion of the wave. It is this waveform phase difference that allows for accurate location of sounds below 1000 Hz(9). Audio direction finding at higher frequencies is less accurate than it is for frequencies below 1000 Hz. At 8000 Hz the pinna (external ear) becomes effective as an aid to localization. In summary it's the ability of the brain to detect a waveform phase difference is what enables it to perceive binaural beats.
The various mental states of the individual are thought to take place across a varied range of frequencies, or brainwaves. By encouraging the frequency following process, entrainment is able to create positive change in the brain, through matching carefully-selected frequencies of light and/or sound. The stimulus enables the individual to access a different state of consciousness, which can be useful for a number of benefits including relaxation, anxiety management, stress reduction and more.
They came to the table with the idea that the entrainment track would “cause” them to be in meditation, which it doesn’t. Or they thought that having the specific brainwaves the entrainment program promotes would “cause” them to be in meditation. It doesn’t. If you really understand the principles above, you’ll understand why. If you don’t grasp why yet, read these principles again and consider what they really mean. The answer is there.

“Stress” is a commonly used term, and it is often used with different meanings. The standard definition for stress that will be used in this article is the disruption of the body’s homeostasis or a state of disharmony in response to a real or perceived threat or challenge (8). The threatening or challenging situation is referred to as a “stressor.” When a person encounters a stressor, the body prepares to respond to the challenge or threat. The autonomic nervous and endocrine systems respond by producing the hormones epinephrine, norepinephrine, and cortisol. The result of this hormone production is a cascade of physiological reactions that make up the stress response. Epinephrine and norepinephrine are involved in the initial changes that take place to prepare the body to react and to prepare for a challenge. These responses include increases in heart and respiration rates, blood pressure, perspiration, and energy production (8). There also is a suppression of immune function, production of β-endorphin (the body’s natural pain killer), and increased acuity of the senses. These changes make up the fight-or-flight response, which prepares the body to cope with the stressor. If the stressor is perceived as negative or more as a threat than as a challenge, cortisol production is increased. Cortisol is involved in energy production but also suppresses immune function.

Words could be great stress relievers. One technique to quell sudden stress is to repeat a phrase from which you draw power and strength. “Think positively about releasing what is bothering you by repeating a positive mantra that uplifts you such as, ‘I am at peace,’ ‘All is well,’ ‘I choose to think thoughts that serve me,’ or ‘I love and believe in myself fully,’” says Carol Whitaker, life transformation expert and the author of Ridiculously Happy! The Secret to Manifesting the Life and Body of Your Dreams. “This too shall pass” is another good one. Repeating a mantra is actually a type of meditation that can make you more resilient to stress—some studies show it can actually alter your brain’s neural pathways. You can place reminders of your mantras near the places you tend to get stressed, like your work space. “I actually keep a file on my computer of great quotes and inspiring sayings. So when I’m feeling overwhelmed by life’s struggles, I clip them to my screensaver, post them on my social media, and even print them out to put on my refrigerator or desk,” Dr. Serani says.
This music encourages a state of alpha relaxation. The alpha state is a pleasant state of relaxed alertness. It’s a state that many people experience when they are waking up in the morning or when they are just beginning to drift off to sleep at night. While in a state of alpha relaxation, the mind is quite clear and receptive to information, learning is accelerated and one’s sense of creativity is enhanced. The mind is also very open to positive suggestions during this state.
However, by listening to binaural music you can dramatically accelerate your progress with meditation, and achieve a far deeper, more relaxing state of mind than you would by practicing traditional meditation techniques. In fact, almost everyone discovers that uses binaural meditation music finds that they go deeper into meditation, faster, and with less concerted effort.

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication or have a medical condition.

When blended with musical sounds, brainwave entrainment frequencies induce specific states of mind, which are the result of those brainwaves, delivering them in pleasing and relaxing audio tracts for use with and without stereo headphones. For example, alpha and theta waves, because they exist at the borders between conscious and unconscious thought, are especially rich and useful for tapping into and stimulating subconscious processes.
Synchronized brain waves have long been associated with meditative and hypnogogic states, and audio with embedded binaural beats has the ability to induce and improve such states of consciousness. The reason for this is physiological. Each ear is "hardwired" (so to speak) to both hemispheres of the brain (Rosenzweig, 1961). Each hemisphere has its own olivary nucleus (sound-processing center) which receives signals from each ear. In keeping with this physiological structure, when a binaural beat is perceived there are actually two standing waves of equal amplitude and frequency present, one in each hemisphere. So, there are two separate standing waves entraining portions of each hemisphere to the same frequency. The binaural beats appear to contribute to the hemispheric synchronization evidenced in meditative and hypnogogic states of consciousness. Brain function is also enhanced through the increase of cross-collosal communication between the left and right hemispheres of the brain.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×