Maybe a favorite popular song, a certain piece of Classical music, a raucous dance beat, the pulse of Reggae, Indian, or African drums, or the chanting of Gregorian or Tibetan monks, but you probably know how the sound of music, drumming, or chanting is capable of transporting you into an altered and joyous state of mind and uplifting your spirits.

In 1973, biophysicist Dr. Gerald Oster published a famous article in Scientific American titled “Auditory Beats in the Brain”, which found that when two pure tones of varying frequencies were combined, a third rhythmic beat was created which he called binaural or monaural beats. According to Oster, monaural beats occur when two tones are combined and sent through a loudspeaker, while binaural beats occur when stereo headphones are used to deliver each tone separately to each ear. Oster concluded that monaural beats were a more effective form of brainwave entrainment.


Group exercise or encouraging stressed clients to find a workout partner is an excellent idea because it can provide a support network and accountability. However, there might be clients who find a group setting intimidating or competitive, which could be counterproductive in managing stress. In addition, those who report stress because of work or family obligations might enjoy the solitude of exercising alone. Using a variety of exercises or nontraditional exercises (e.g., exergaming, dance classes, yard work, or rock climbing) is a way to plan activities that are enjoyable to maximize adherence. Knowing your clients’ exercise barriers and stressors will help with planning an exercise program that can address these variables to maximize the benefits for health and stress management.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×