“Stress” is a commonly used term, and it is often used with different meanings. The standard definition for stress that will be used in this article is the disruption of the body’s homeostasis or a state of disharmony in response to a real or perceived threat or challenge (8). The threatening or challenging situation is referred to as a “stressor.” When a person encounters a stressor, the body prepares to respond to the challenge or threat. The autonomic nervous and endocrine systems respond by producing the hormones epinephrine, norepinephrine, and cortisol. The result of this hormone production is a cascade of physiological reactions that make up the stress response. Epinephrine and norepinephrine are involved in the initial changes that take place to prepare the body to react and to prepare for a challenge. These responses include increases in heart and respiration rates, blood pressure, perspiration, and energy production (8). There also is a suppression of immune function, production of β-endorphin (the body’s natural pain killer), and increased acuity of the senses. These changes make up the fight-or-flight response, which prepares the body to cope with the stressor. If the stressor is perceived as negative or more as a threat than as a challenge, cortisol production is increased. Cortisol is involved in energy production but also suppresses immune function.
Entrainment is a principle of physics which appears in biology, chemistry, neurology, medicine, astronomy etc. It is defined as the synchronization of two or more rhythmic cycles. In the seventeenth century, Dutch scientist Christian Huygens found out that by placing two unsynchronized clocks side by side on a wall, they would slowly synchronize to each other in a very accurate way. The clocks were the first example of spontaneous synchronization, a phenomenon found throughout nature from cells to the Solar System.
Binaural beats were the first method discovered for brainwave entrainment and works by delivering tones of different audible frequencies to the two ears with the difference in frequency between the two tones being the frequency of entrainment. The difference in frequency between the two tones must be less than 30 hertz, and this resulting frequency is called a beat or the target frequency, and it is processed in a brain region called the olivary body. When listening to such tones with stereo headphones, the two hemispheres of the brain become synchronized at the target frequency.
In 1984 medical researcher Dr. Gene W. Brockopp published a paper making several conclusions of audio and visual entrainment (AVE). Such conclusions were that hemispheric synchronization caused by AVE is related to increased intellectual functioning, practiced use of AVE overtime leads to a cumulative effect, and AVE may result in the recovery of early childhood experiences.
Most of these websites give some brief explanation of entrainment. The example you hear most often is that of Dutch polymath Christiaan Huygens, who in 1665, hung two pendulum clocks next to each other on a wall. He noticed that the pendulums eventually matched each others' frequency, but always in antiphase, opposite to each other, as if canceling each other out. He'd try disturbing one or setting them in sync, but they'd always return to the same antiphase synchronization. Huygen's experience is widely touted on binaural beat websites as a demonstration of how systems can become spiritually connected through some energy field. However, they misunderstand what happened, and have not read the full story. Huygens also tried taking one clock off the wall, and as soon as they were no longer physically connected to one another via the actual wall, the effect disappeared. It was not the proximity of the clocks to one another that created the entrainment; it was their physical, mechanical connection to one another. As each pendulum swung it imparted an infinitesimal equal and opposite reaction to the wall itself. With two clocks on the wall, the system naturally sought the lowest energy level, according to the laws of thermodynamics; and both pendulums would thus swing exactly counter to each other, minimizing the system's total energy.

Thanks for the reply. I am now clearer on ‘what’ is heard. Can you expand or point me in direction ..a bit more about ‘pitch frequency’ and frequency spoken about and what exactly is the difference ..and how we use the higher pitch frequencies to ‘hear’ or become aware of them? Would you only pick up the low freq on a EEG?. sorry for being pedantic ..it still does not clear up split isochronics and possibly creating same situation as binaural beats..
Isochronic tones are basically just a single tone with the volume being turned on and off at regular intervals. When you apply the same effects to music or a noise, it’s usually referred to as amplitude entrainment effects (in Mind Workstation anyway). When you apply the on/off effect to music or noise it’s usually done by targeting a specific frequency range in the sound and only turning that part on/off, leaving the rest of the music/noise untouched. What that does is allow parts of the music/noise to play without being distorted/interrupted, making it sound more pleasant to listen to. It produces a kind of fluttering sound as I like to call it and you can adjust the level of intensity.
Both brainwave entrainment and neurofeedback deal with brainwaves, but the similarity stops there. Entrainment pushes your whole brain into a pre-determined state, while neurofeedback teaches you how to move specific parts of your brain on your own. It is the differeence between forcing the brain into a given position, and skills building so you can move it there yourself.