One can also learn to control and slow down their brain waves through various neurofeedback technologies such as electroencephalograph (EEG), galvanic skin response (GSR), and heart, pulse and breath rate monitors. These devices measure stress and relaxation parameters and then "play" back the signals to the user so they can use the signals as a beacon to guide and "steer" themselves into a relaxed state. This takes some time, work and discipline but is much quicker than learning meditation.
When explaining this to others they frequently respond with something like, “But I had no expectation or even any idea that my face might experience flushing. I didn’t even know that was possible. Now every time I listen to a particular entrainment track that specific face flushing occurs. If it is a specific phenomena, and it only happens when I use one certain entrainment track, doesn’t that prove it is the entrainment causing it?”
The final suggestion I have to offer is that you make your practice a regular, consistent habit. You don’t have to be perfect but you do need consistency. Like any other skill, entering meditation will develop in direct proportion to the consistency of your practice. Missing a session occasionally is not going to derail all your progress. But frequently skipping or blowing insincerely through practice is not going to produce any noteworthy results. There isn’t any hard and fast rule from frequency of practice that always applies to everyone, but most of us will instinctively know whether or not we’re giving our practice the time and effort it requires.
A therapy that slows brainwave activity, helping to produce low-frequency waves, is likely to aid relaxation and sleep. But it’s not only lowering brainwave frequency that binaural beats may offer to sleep and relaxation. A small study (19 people) has found that exposure to binaural beats is associated with changes to three hormones important to sleep and well being:
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]