, that is, the average of the two frequencies. It can be noted that every second burst in the modulation pattern is inverted. Each peak is replaced by a trough and vice versa. However, because the human ear is not sensitive to the phase of a sound, only its amplitude or intensity, only the magnitude of the envelope is heard. Therefore, subjectively, the frequency of the envelope seems to have twice the frequency of the modulating cosine, which means the audible beat frequency is:[5]
Binaural-beat perception originates in the inferior colliculus of the midbrain and the superior olivary complex of the brainstem, where auditory signals from each ear are integrated and precipitate electrical impulses along neural pathways through the reticular formation up the midbrain to the thalamus, auditory cortex, and other cortical regions.[6]
Aletheia Luna is an influential psychospiritual writer whose work has changed the lives of thousands of people worldwide. After escaping the religious sect she was raised in, Luna experienced a profound existential crisis that led to her spiritual awakening. As a spiritual counselor, diviner, and author, Luna's mission is to help others become conscious of their entrapment and find joy, empowerment, and liberation in any circumstance. [Read More]
Pure tones played together interfere with each other when they are close in pitch but not identical. When each tone is sent to a different ear, there will not be any physical interaction between the waves, yet your brain still creates an interference inside your head: the so-called binaural beat. In order to create a binaural beat, each ear must receive its dedicated signal. Therefore, binaural beats only work through headphones.
Controlled or pre/post studies of the effects of BWE using auditory or visual stimulation were eligible for inclusion, provided pulses of light or tone were delivered at frequencies hypothesised to have a beneficial effect or in line with a protocol addressing clinical outcomes. Studies were required to report clinical or psychological outcomes (measured using standard methods or as deemed appropriate by peer review) and to report statistical analysis. Studies of outcomes such as electroencephalogram (EEG) response or neurotransmitter levels were not eligible. Case studies were excluded.
The Transparent Corp forum – This forum is an invaluable resource for any brainwave entrainment user or enthusiast. Most of the feedback is obviously focused on the Transparent Corp software, but with over 20,000+ posts now you can find answers to the whole array of brainwave entrainment questions on there. (UPDATE: Sadly, the Transparent Corp forum has now been taken offline)
You’ve heard me talk before about how sound can make a difference to sleep. Patients often tell me that they fall asleep to relaxing music, they seem to find it really helps them let go of active thoughts and quiet their mind—which, like yours probably does, tends to race from one thing to the next all day long (aka I can’t turn off my brain syndrome).
What the Neuro Programmer does (as far as I can tell – access to much of the website requires the purchase of product) is present sound and visuals on the computer screen. The user is meant to passively view and listen to this while their brain is effortlessly programmed to solve whatever problem they are having or improve whatever performance they are interested in.
And so we (not too surprisingly) begin to experience “symptoms” or “signs” of something that we do not ordinarily experience. Immediately, we associate these with the entrainment or the meditation. We wonder if this is something real or imagined so we often start asking others if they have experienced the same or similar things. We seek validation that our practices are producing tangible effects on us.
^ Trost W. and Vuilleumier P., Rhythmic entrainment as a mechanism for emotion induction by music: a neurophysiological perspective. In The Emotional Power of Music: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control, Cochrane T., Fantini B., and Scherer K. R., (Eds.), Oxford, UK: Oxford University Press; 2013, pp213–225.