Most of these websites give some brief explanation of entrainment. The example you hear most often is that of Dutch polymath Christiaan Huygens, who in 1665, hung two pendulum clocks next to each other on a wall. He noticed that the pendulums eventually matched each others' frequency, but always in antiphase, opposite to each other, as if canceling each other out. He'd try disturbing one or setting them in sync, but they'd always return to the same antiphase synchronization. Huygen's experience is widely touted on binaural beat websites as a demonstration of how systems can become spiritually connected through some energy field. However, they misunderstand what happened, and have not read the full story. Huygens also tried taking one clock off the wall, and as soon as they were no longer physically connected to one another via the actual wall, the effect disappeared. It was not the proximity of the clocks to one another that created the entrainment; it was their physical, mechanical connection to one another. As each pendulum swung it imparted an infinitesimal equal and opposite reaction to the wall itself. With two clocks on the wall, the system naturally sought the lowest energy level, according to the laws of thermodynamics; and both pendulums would thus swing exactly counter to each other, minimizing the system's total energy.
In physics, entrainment is the process of two oscillating systems coming to assume the same periodic rhythm, such as is observed when two clocks slowly synchronize their ticking and tick together in harmony after some time. Pendulums also achieve this same synchronicity when swinging in close proximity to one another, a phenomenon first observed and written about in 1665 by Christiaan Huygens, a Dutch scientist.
But the question is: Does it have a special effect on the brain? A lot of people think so. The basic claim being made for binaural beats is "resonant entrainment". Entrainment, in physics, is when two systems which oscillate at different frequencies independently are brought together, they synchronize with one another, at whatever the combined system's resonant frequency is. Examples of entrainment occur in animals in nature; for example the chirping of crickets or the croaking of frogs. Synchronization of menstrual cycles in women is another example. Even people coming together and dancing with one another is a type of entrainment. The basic claim for binaural beats is that the perceived low-frequency beat will entrain your brain wave pattern, thus forcing your brain into some desired state.
When you play a tone with a slightly different frequency into your left and right ear — say, 200 hertz (Hz) in one and 210 Hz in the other — they travel separately to your inferior colliculus, the part of your brain that gathers auditory input. There, the tones “squelch” together into a so-called “beat” at a perceived new frequency. (In this case, it would be 10 Hz.)

In addition to understanding how exercise can help manage stress and the types of exercise to recommend for stress management, it is important to understand common barriers that might affect exercise participation in high-stress clients. Lack of time is the most commonly reported exercise barrier for individuals in general. A lack of motivation, fatigue, poor sleep habits, and poor dietary habits are factors associated with stress that can negatively impact exercise compliance and adherence (4). Common exercise barriers and stress-related health problems should be taken into consideration when developing an exercise prescription for high-stress individuals.

I am very encouraged by my stroke recovery progress after starting with Sacred Acoustics! I have been listening to the extended Light Body (non verbal) recording almost constantly. I keep it on the repeat mode and at a low enough volume so that I do fine with ordinary conversation as I go about my daily activity. The results with constant listening of Light Body are so fantastic, I hate to stop! 
Brainwaves, or neural oscillations, share the fundamental constituents with acoustic and optical waves, including frequency, amplitude and periodicity. Consequently, Huygens' discovery precipitated inquiry[citation needed] into whether or not the synchronous electrical activity of cortical neural ensembles might not only alter in response to external acoustic or optical stimuli but also entrain or synchronize their frequency to that of a specific stimulus.[16][17][18][19]
×