It might seem obvious that you’€™d know when you’€™re stressed, but many of us spend so much time in a frazzled state that we’ve forgotten what it feels like when our nervous systems are in balance: €”when we’€™re calm yet still alert and focused. If this is you, you can recognize when you’re stressed by listening to your body. When you’re tired, your eyes feel heavy and you might rest your head on your hand. When you’re happy, you laugh easily. And when you’re stressed, your body lets you know that, too. Get in the habit of paying attention to your body’€™s clues.
Alpha: Alpha brainwave patterns are associated with a state of wakeful relaxation. Slower and lower in frequency (between 9-14 hertz), alpha waves are dominant when we’re calm and relaxed, but still alert. Alpha waves are associated with states of meditation (your yoga class probably puts you in an alpha state), and also with our ability to be creative.
Your brain operates at certain levels of activity – the normal waking, active Beta, the meditative Alpha, the asleep-and-dreaming or deep meditative Theta, and the deep sleep/unconscious Delta. Beta is characterized by one thing we all want to get away from – stress.But that brainwave state has its place. It’s the action mode, and that’s the way it should be! If we’re not alert when we’re awake, bad things can happen, right?
Eric Bartel is the creator of the Free Binaural Beats website and the sole creator of the audios found here. He specializes in creating binaural beats and isochronic tones along with relaxing ambient meditation music. From his home studio in the Black Hills of South Dakota, Eric is committed to bringing the healing power of binaural beats to anyone who wants to live a more peaceful, relaxed and fulfilled life.
This research investigates the brainwave entrainment process and aims to demonstrate the usefulness of such an approach within the framework of cognitive performance improvements. In the introductory part the theories regarding the neurophysiological structure and the psychological processing of the cognitive system are discussed, for each of their components that are considered to be relevant for this research. The hypothesis states that the stimulation with binaural beats and stroboscopic light, synchronized at 10.2 Hz frequency, will produce a positive change in cognition. The research variables are the cognitive performance (the dependent variable) and the brainwave entrainment (the independent variable). The brainwave entrainment program consists in the synchronized application of Alpha binaural beats and stroboscopic light, at a 10.2 Hz frequency, in a 30 minutes long session. The difference was made by the stroop effect based exercise that was used as a frame. There were 60 participants, divided into two independent samples. The two independent samples t test for the means differences was used in the statistical analysis. The obtained results by evaluations and by statistics confirmed this research's hypothesis, stating that the stimulation with binaural beats and stroboscopic light, synchronized at 10.2 Hz frequency, will produce a positive change in cognition.
Research: the authors stated that qualitative electroencephalogram signatures needed to be developed for different disorders and tested using standard validated methods of psychological assessment. Larger RCTs were needed with clear inclusion criteria for participants. The RCTs should measure qualitative EEG, hormone levels and the time of day of the intervention. Interventions protocols should be clearly defined and the relationship between session frequency/ duration and outcomes should be explored. More studies of auditory stimulation were needed, as well as studies comparing different types of stimulation, monaural, binaural and isochronic beats and use of white noise versus music.
The mechanism for this is that when your eyes or ears are exposed to a particular frequency of pulses or beats, the thalamus first distributes this information to the entire brain, including the visual and cerebral cortex where neural activity begins to synchronize to the incoming frequency, producing hemispheric synchronization and a balance of brainwave activity across the brain.
Both brainwave entrainment and neurofeedback deal with brainwaves, but the similarity stops there. Entrainment pushes your whole brain into a pre-determined state, while neurofeedback teaches you how to move specific parts of your brain on your own. It is the differeence between forcing the brain into a given position, and skills building so you can move it there yourself. 
×