^ Trost W. and Vuilleumier P., Rhythmic entrainment as a mechanism for emotion induction by music: a neurophysiological perspective. In The Emotional Power of Music: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control, Cochrane T., Fantini B., and Scherer K. R., (Eds.), Oxford, UK: Oxford University Press; 2013, pp213–225.
... Audio visual stimulation effects people on two levels: Budzynski (2001) reports significant improvement of mental capabilities after AVS in 75-year old male. Cruceanu and Rotarescu (2013) proved that the exposure to 30-minutes of audio-visual stimulation with the frequency of 10,2 Hz significantly improves cognitive skills. Based on their research, authors claim that people need to be exposed to AVS at least for 20 minutes in order to achieve positive effects. ...
Binaural beats can easily be heard at the low frequencies (< 30 Hz) that are characteristic of the EEG spectrum (Oster, 1973). This perceptual phenomenon of binaural beating and the objective measurement of the frequency-following response (Hink, Kodera, Yamada, Kaga, & Suzuki, 1980) suggest conditions which facilitate entrainment of brain waves and altered states of consciousness. There have been numerous anecdotal reports and a growing number of research efforts reporting changes in consciousness associated with binaural-beats. "The subjective effect of listening to binaural beats may be relaxing or stimulating, depending on the frequency of the binaural-beat stimulation" (Owens & Atwater, 1995). Binaural beats in the delta (1 to 4 Hz) and theta (4 to 8 Hz) ranges have been associated with reports of relaxed, meditative, and creative states (Hiew, 1995), and used as an aid to falling asleep. Binaural beats in the alpha frequencies (8 to 12 Hz) have increased alpha brain waves (Foster, 1990) and binaural beats in the beta frequencies (typically 16 to 24 Hz) have been associated with reports of increased concentration or alertness (Monroe, 1985) and improved memory (Kennerly, 1994).
The functional role of neural oscillations is still not fully understood;[6] however they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory.[7][8][9] Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory.[10][11][12]