Binaural beats are dual tones, each one slightly different from the other. You hear one tone in each ear and your brain responds by creating a tone to reconcile the difference between the two. Isochronic tones are single tones. The variation in pattern here is brought in by interspersing silence between the sound, which means that your isochronic tone does not have a continuous sound but tones broken up by silences. Studies show that isochronic tones have far more contrast than binaural beats because of the silence and sound pattern. This sharp contrast evokes a faster impact from your brain, prompting it to match the frequency more quickly. Also, isochronic tones are found to be stronger stimulants to the brain.
Thanks Lorita. There hasn’t been any isochronic tones research that I’m aware of, for anti-aging, fat loss or attracting people, or any significant anecdotal feedback. You could combine positive affirmations or hypnosis scripts with isochronic tones to try and change habits and that could help with fat loss or build confidence to attract people. But it would be the affirmations and hypnosis doing most of the work, the isochronic tones would just be used to help relax the listener and put them in a more suggestible state. I don’t believe isochronic tones can affect those things, without being used in combination with some kind of vocal mental programming.
Basically, "two ears." One usage of the word is "binaural recording," which is a form of stereo recording meant to take advantage of the spatial perception of the human ear. Recordings are usually done using a pair of microphones mounted to a dummy head with roughly accurate models of the human outer ear, and the result when played back through headphones is extremely realistic and comparable to surround sound, though following an entirely different recording model. Binaural recordings aren't woo at all, and have nothing to do with binaural beats.[citation needed]
Binaural beats were discovered in 1839 by a German experimenter, H. W. Dove. The human ability to "hear" binaural beats appears to be the result of evolutionary adaptation. Many evolved species can detect binaural beats because of their brain structure. The frequencies at which binaural beats can be detected change depending upon the size of the species' cranium. In the human, binaural beats can be detected when carrier waves are below approximately 1000 Hz (Oster, 1973). Below 1000 Hz the wave length of the signal is longer than the diameter of the human skull. Thus, signals below 1000 Hz curve around the skull by diffraction. The same effect can be observed with radio wave propagation. Lower-frequency (longer wave length) radio waves (such as AM radio) travel around the earth over and in between mountains and structures. Higher-frequency (shorter wave length) radio waves (such as FM radio, TV, and microwaves) travel in a straight line and can't curve around the earth. Mountains and structures block these high-frequency signals. Because frequencies below 1000 Hz curve around the skull, incoming signals below 1000 Hz are heard by both ears. But due to the distance between the ears, the brain "hears" the inputs from the ears as out of phase with each other. As the sound wave passes around the skull, each ear gets a different portion of the wave. It is this waveform phase difference that allows for accurate location of sounds below 1000 Hz(9). Audio direction finding at higher frequencies is less accurate than it is for frequencies below 1000 Hz. At 8000 Hz the pinna (external ear) becomes effective as an aid to localization. In summary it's the ability of the brain to detect a waveform phase difference is what enables it to perceive binaural beats.

Summaries from recent reviews on yoga or Tai Chi clinical trial interventions indicate that these mind-body types of exercise can be effective in reducing stress (7,14,17). The authors of these reviews suggest that the results should be viewed with caution because study quality was varied (7,17). However, it should be noted that reductions in stress reported in one review were similar to or greater than reductions from other types of commonly used stress management techniques (7).

In addition to understanding how exercise can help manage stress and the types of exercise to recommend for stress management, it is important to understand common barriers that might affect exercise participation in high-stress clients. Lack of time is the most commonly reported exercise barrier for individuals in general. A lack of motivation, fatigue, poor sleep habits, and poor dietary habits are factors associated with stress that can negatively impact exercise compliance and adherence (4). Common exercise barriers and stress-related health problems should be taken into consideration when developing an exercise prescription for high-stress individuals.
You are using an entrainment product that is not well designed and is not assisting you with your meditative practice. Since we’re focusing on the use of LifeFlow it would be fair to point out that it has shown itself to be highly effective by literally hundreds of users registered on our forum, facebook page and Blog. Its technical attributes have proven themselves over time. There are, of course, other products on the market which are also effective. We can safely say that LifeFlow has demonstrated that it works. Failure to experience its benefits are not due to defects in design or technical specifications.
Please note: When you take one earphone out, move it as far away from your ear as possible. With some headphones you may still be able to hear the pulsating sound if the removed headphone is still fairly close to your ear; this is because your brain can still detect the frequency vibration coming from the headphone. In addition, push the earphone that’s still on your ear tightly to your ear, while moving the other earphone as far away as possible.

Subsequently, the term 'entrainment' has been used to describe a shared tendency of many physical and biological systems to synchronize their periodicity and rhythm through interaction. This tendency has been identified as specifically pertinent to the study of sound and music generally, and acoustic rhythms specifically. The most ubiquitous and familiar examples of neuromotor entrainment to acoustic stimuli is observable in spontaneous foot or finger tapping to the rhythmic beat of a song.
×