It is important to note that not all stress is bad. Everyone experiences a certain amount of stress on an almost daily basis, and it cannot be completely eliminated. Stress becomes a problem when too much is experienced, and it has a negative impact on behaviors, relationships, and health. The term “eustress” refers to positive stress that is associated with improved performance and productivity. “Distress” is negative stress that is associated with performance decrement and negative health consequences. The individual’s perception of the stressor and coping resources determine whether a situation is eustress or distress. College graduation is a stressor for most. The student who has a job or who has been accepted to a graduate program likely perceives the stress of graduation as eustress, whereas the student who has student loans and no immediate plans of a job or further education perceives distress.

However, by listening to binaural music you can dramatically accelerate your progress with meditation, and achieve a far deeper, more relaxing state of mind than you would by practicing traditional meditation techniques. In fact, almost everyone discovers that uses binaural meditation music finds that they go deeper into meditation, faster, and with less concerted effort.


Living in a Mindful Universe relates the emerging view of consciousness that is revolutionizing the scientific community, and is, in many ways, the continuation of Dr. Alexander’s journey since writing Proof of Heaven. This journey parallels an unprecedented shift in the western scientific paradigm that, when fully incorporated, will lead to far more meaning and purpose in our lives.
All of this is entirely understandable, even somewhat predictable. Unfortunately, it quickly becomes counter-productive. Such experiences, while having a certain feeling of solidity to them, are largely the product of our desires and expectations. Did your face get flushed? One look in the mirror confirms it did. Was this caused by the entrainment? No, it was not. It was the result of what was sought after and what was expected or even hoped for.

In addition to its calming physical effects, the relaxation response also increases energy and focus, combats illness, relieves aches and pains, heightens problem-solving abilities, and boosts motivation and productivity. Best of all, anyone can reap these benefits with regular practice. And while you may choose to pay for a professional massage or acupuncture session, for example, most relaxation techniques can be done on your own or with the aid of free audio downloads or inexpensive smartphone apps.

Entrainment guides our brainwaves into targeted ranges, but they are ranges we go through naturally many times every day. LifeFlow 10, for example, takes the brain to a 10Hz frequency. We experience this same frequency when closing our eyes and taking a deep breath, or when consciously relaxing physical tension in the body, or when we find ourselves lost in a daydream, or when we view a beautiful sunset, or when we find ourselves caught up in an especially peaceful bit of music. If there was a cause-and-effect relationship between these 10Hz brainwaves and our face flushing, then our face should also flush when we enter that daydream, listen to that piece of music, watch that sunset, or close our eyes and relax. The same brainwave patterns are present during all those activities as they are while listening to LF-10. But these other activities don’t bring on the same face flushing.

After fixation upon our phenomenon takes place, what started out as a random perception is now cemented into our experience of, and is conditionally associated with entrainment. We condition ourselves to relive the same experience associated with entrainment each time we use it. It isn’t random any longer. It is explicit conditioning, and it repeats as predictably as the sunrise using entrainment as its new trigger.
In order to understand brainwave entrainment you first have to understand something about brain waves and electroencephalograms (EEG). Neurons are cells that communicate with each other through electrical conduction. When a neuron fires it creates a small electrical and magnetic field. These fields are far too small to measure by placing electrodes on the scalp, or even on the surface of the brain. The only reason we can detect the electrical fields of the brain is because many neurons are firing together – in synchrony. All brain waves that are measured by an EEG, therefore, represent a large group of neurons firing together.

This version of Theta Waves music is nice to listen to and the theta wave with binaural feeding of different wave lengths might be correct as the author indicates it, but for me it was disturbing that in the general sound track of a constant gliding sound I expect from Theta Healing CDs some ringing sounds like bells constantly interfered just in moments when the brain and mind would go into the meditation state and synchronize both sides of the brain. As I am a musician myself and use a lot of classical music but never normally use music for meditation, I felt a bit disillusioned from this CD. For the purpose of Theta Healing and deep Theta Meditation, I would not use this music, but prefer the Theta Healing CDs. I was really astonished that so many people say they can meditate deeply with this music. Perhaps my brain is somehow different. I asked myself if the author ever has experienced what a deep meditation with no thoughts and complete stillness is. Music is also able to distract us from true meditation and this kind of music does.
Binaural beats, or binaural tones, are auditory processing artifacts (apparent sounds) resulting from the stimulation of the ears with two different sound frequencies. In fact, when two different vibrations are delivered to the brain separately through each ear, using stereo headphones, the two hemispheres of the brain function together to “hear” and perceive not the external sound signals, but a third phantom signal. This resulting signal, discovered in 1839 by Heinrich Wilhelm Dove, is called “binaural beat”. The effect on the brain waves depends on the difference of each tone. For example, if a sound frequency of 300 Hz is played in the left ear and 307 Hz in the right one, then the binaural beat would have a frequency of 7 Hz (“frequency following response”) which corresponds to the Alpha brain state, generally associated with relaxation, visualization and creativity. The beating tone is perceived as if the two tones mixed naturally, out of the brain. For the binaural beat effect to occur, the difference between the two frequencies must be small (less than or equal to 30 Hz), otherwise, the two tones will be heard separately, and no beat will be perceived.
The binaural-beat appears to be associated with an electroencephalographic (EEG) frequency-following response in the brain (3). Many studies have demonstrated the presence of a frequency-following response to auditory stimuli, recorded at the vertex of the human brain (top of the head). This EEG activity was termed "frequency-following response" because its period corresponds to the fundamental frequency of the stimulus (Smith, Marsh, & Brown, 1975). Binaural-beat stimulation appears to encourage access to altered states of consciousness.

“Binaural beats are not very noticeable because the modulation depth (the difference between loud and quiet) is 3 db, a two-to-one ratio. (Isochronic tones and mono beats easily have 50 db difference between loud and quiet, which is a 100,00-to-1 ratio). This means that binaural beats are unlikely to produce an significant entrainment because they don’t activate the thalamus.”
The functional role of neural oscillations is still not fully understood;[6] however they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory.[7][8][9] Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory.[10][11][12]
×