Resonant entrainment of oscillating systems is a well-understood principle within the physical sciences. If a tuning fork designed to produce a frequency of 440 Hz is struck (causing it to oscillate) and then brought into the vicinity of another 440 Hz tuning fork, the second tuning fork will begin to oscillate. The first tuning fork is said to have entrained the second or caused it to resonate. The physics of entrainment apply to bio-systems as well. Of interest here are the electromagnetic brain waves. The electrochemical activity of the brain results in the production of electromagnetic wave forms which can be objectively measured with sensitive equipment. Brain waves change frequencies based on neural activity within the brain. Because neural activity is electrochemical, brain function can be modified through the introduction of specific chemicals (drugs), by altering the brain's electromagnetic environment through induction, or through resonant entrainment techniques.
I am fortunate to be working with Deepak Chopra, M.D., and Dr. Rudy Tanzi, co-authors of the bestselling book Super Brain, on a technology called Brain Wave Entrainment. Deepak is very well known, but Rudy is an amazingly interesting person as well. He is the Kennedy Professor of Neurology at Harvard Medical School and Vice-Chair of Neurology at Mass General Hospital. Rudy co-discovered three of the four original Alzheimer's genes and today runs the Alzheimer's Genome Project. He also plays the keyboards, including, at times, for Aerosmith. He is kind of a real life "Buckaroo Banzai."
Why do you like to do these things? “I can escape from stress on my bike. My time on the bike gives me time to problem solve and consider all sorts of things. There are no interruptions from technology so it’s a peaceful time for me. I get to enjoy just being outside. This will sound crazy but sometimes I can ride for miles and not even remember the actual riding since I was ‘lost’ in my thoughts.”
The activity of neurons generate electric currents; and the synchronous action of neural ensembles in the cerebral cortex, comprising large numbers of neurons, produce macroscopic oscillations. These phenomena can be monitored and graphically documented by an electroencephalogram (EEG). The electroencephalographic representations of those oscillations are typically denoted by the term 'brainwaves' in common parlance.[4][5]