Gamma brainwaves occur during creative thinking and processing of memory and language and in many learning activities. These brainwaves are not present at all when a person is under anesthesia, but return as soon as the person becomes conscious again. Multiple scientific studies have shown gamma brainwave entrainment to be helpful for reducing distractibility, improving short-term memory, improving motor coordination, and relieving migraine headaches.


So, there’s the deep stuff here, and then there’s the gamma stuff, too. There’s a little bit of 80 Hz, but it’s primarily a 40-Hz gamma track, gamma frequencies that are combined with a pulse, on and off, throughout the recording. I went to some lengths to make this as rich and potent as I could, whilst blending it into the sound of the music. There are these really rich, kind of cat-purr-like vibrations that come through at times, combined with the lulling, deeply relaxing theta brain waves.
I am very encouraged by my stroke recovery progress after starting with Sacred Acoustics! I have been listening to the extended Light Body (non verbal) recording almost constantly. I keep it on the repeat mode and at a low enough volume so that I do fine with ordinary conversation as I go about my daily activity. The results with constant listening of Light Body are so fantastic, I hate to stop! 
Your brainwave activity during sleep is largely distinct from your brain activity when you’re awake. (REM sleep is one exception to this—during REM, your brain is active in ways very much like when you’re awake.) During non-REM sleep, the slower, lower frequency theta and delta waves dominate, compared to the alpha and beta waves that are prominent when you’re alert and active.
You may recognize the "binaural recording" from ASMR, where the technique is often used. This explains why, if you search for "binaural" on YouTube, you get a mixture of two entirely different kinds of results: binaural beats and binaural ASMR recordings. It gets especially confusing in that there's some questionable and/or unexplored science surrounding each one.
Subsequently, the term 'entrainment' has been used to describe a shared tendency of many physical and biological systems to synchronize their periodicity and rhythm through interaction. This tendency has been identified as specifically pertinent to the study of sound and music generally, and acoustic rhythms specifically. The most ubiquitous and familiar examples of neuromotor entrainment to acoustic stimuli is observable in spontaneous foot or finger tapping to the rhythmic beat of a song.
×