It might seem obvious that you’€™d know when you’€™re stressed, but many of us spend so much time in a frazzled state that we’ve forgotten what it feels like when our nervous systems are in balance: €”when we’€™re calm yet still alert and focused. If this is you, you can recognize when you’re stressed by listening to your body. When you’re tired, your eyes feel heavy and you might rest your head on your hand. When you’re happy, you laugh easily. And when you’re stressed, your body lets you know that, too. Get in the habit of paying attention to your body’€™s clues.
When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the... [Show full abstract]
“Binaural beats are not very noticeable because the modulation depth (the difference between loud and quiet) is 3 db, a two-to-one ratio. (Isochronic tones and mono beats easily have 50 db difference between loud and quiet, which is a 100,00-to-1 ratio). This means that binaural beats are unlikely to produce an significant entrainment because they don’t activate the thalamus.”

After you fully understand the above principles, the next source of poor results to consider arises from faulty expectations and misunderstandings about what meditation and brainwave entrainment are, and what the experience of either one of them is like. Meditation and Brainwave entrainment aren’t synonyms but the misunderstandings about them do have some overlapping areas. Some misunderstandings are common to both while some are unique to one or the other.
Binaural beats, or binaural tones, are auditory processing artifacts (apparent sounds) resulting from the stimulation of the ears with two different sound frequencies. In fact, when two different vibrations are delivered to the brain separately through each ear, using stereo headphones, the two hemispheres of the brain function together to “hear” and perceive not the external sound signals, but a third phantom signal. This resulting signal, discovered in 1839 by Heinrich Wilhelm Dove, is called “binaural beat”. The effect on the brain waves depends on the difference of each tone. For example, if a sound frequency of 300 Hz is played in the left ear and 307 Hz in the right one, then the binaural beat would have a frequency of 7 Hz (“frequency following response”) which corresponds to the Alpha brain state, generally associated with relaxation, visualization and creativity. The beating tone is perceived as if the two tones mixed naturally, out of the brain. For the binaural beat effect to occur, the difference between the two frequencies must be small (less than or equal to 30 Hz), otherwise, the two tones will be heard separately, and no beat will be perceived.

^ Trost W. and Vuilleumier P., Rhythmic entrainment as a mechanism for emotion induction by music: a neurophysiological perspective. In The Emotional Power of Music: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control, Cochrane T., Fantini B., and Scherer K. R., (Eds.), Oxford, UK: Oxford University Press; 2013, pp213–225.
The functional role of neural oscillations is still not fully understood;[6] however they have been shown to correlate with emotional responses, motor control, and a number of cognitive functions including information transfer, perception, and memory.[7][8][9] Specifically, neural oscillations, in particular theta activity, are extensively linked to memory function, and coupling between theta and gamma activity is considered to be vital for memory functions, including episodic memory.[10][11][12]
×