Your brain operates at certain levels of activity – the normal waking, active Beta, the meditative Alpha, the asleep-and-dreaming or deep meditative Theta, and the deep sleep/unconscious Delta. Beta is characterized by one thing we all want to get away from – stress.But that brainwave state has its place. It’s the action mode, and that’s the way it should be! If we’re not alert when we’re awake, bad things can happen, right?

Most programs start at a work/life busy brain Beta frequency of twenty light flashes per second (20Hz) and slowly ramp them down to Alpha (relaxation and meditation) at 8-12 HZ, Theta (deep relaxation and dreaming) at 4-8 Hz) and Delta (dreamless deep relaxation) of .5-4Hz. We have taken measurements at Mass General with state of the art EEG equipment and have seen a slowing of the brain waves from Beta to Theta in two minutes and complete brain wave harmonization in the left, right, anterior, posterior and occipital regions of the brain.
Some studies have found that binaural beats can affect cognitive function positively or negatively, depending on the specific frequency that’s generated. For example, a study of long-term memory found that beta-frequency binaural beats improved memory, while theta-frequency binaural beats interfered with memory. This is something for scientists to continue to examine closely. For people who use binaural beats, it’s important to understand that different frequencies will produce different effects.
In a recent national survey, 44 percent of adults said stress had caused sleepless nights at least once in the previous month. All that tossing, turning and staring at the ceiling can leave you feeling tired and more stressed the next day. If you’re caught in this vicious cycle of anxiety and insomnia, there’s good news: Simple stress relief techniques can help you sleep better and feel calmer.
For many of us, relaxation means zoning out in front of the TV at the end of a stressful day. But this does little to reduce the damaging effects of stress. To effectively combat stress, we need to activate the body’s natural relaxation response. You can do this by practicing relaxation techniques such as deep breathing, meditation, rhythmic exercise, and yoga. Fitting these activities into your life can help reduce everyday stress, boost your energy and mood, and improve your mental and physical health.
So, in summary, binaural beats certainly do not work the way the sellers claim, but there's no reason to think they're any less effective than any other music track you might listen to that effects you in a way you like. If they make you sleepy (like they all do for me), use them to go to sleep. If they relax you or get you amped, use them for that. But don't expect them to be any more effective than regular music. If someone you know claims that they are, put them to the test, and bust the myth.
♥ Taking the 16 HZ setting and combining it with a playlist of chilled out deadmau5 songs produces interesting effects, my right arm slowly began tingling and I eventually became rather focused on the task at hand. To be honest, although I don't go in for placebo and homeopathic remedies, the feeling I received from this combo made me feel... Alive... For the first time in a long time. It was nice.

Binaural beats were discovered in 1839 by a German experimenter, H. W. Dove. The human ability to "hear" binaural beats appears to be the result of evolutionary adaptation. Many evolved species can detect binaural beats because of their brain structure. The frequencies at which binaural beats can be detected change depending upon the size of the species' cranium. In the human, binaural beats can be detected when carrier waves are below approximately 1000 Hz (Oster, 1973). Below 1000 Hz the wave length of the signal is longer than the diameter of the human skull. Thus, signals below 1000 Hz curve around the skull by diffraction. The same effect can be observed with radio wave propagation. Lower-frequency (longer wave length) radio waves (such as AM radio) travel around the earth over and in between mountains and structures. Higher-frequency (shorter wave length) radio waves (such as FM radio, TV, and microwaves) travel in a straight line and can't curve around the earth. Mountains and structures block these high-frequency signals. Because frequencies below 1000 Hz curve around the skull, incoming signals below 1000 Hz are heard by both ears. But due to the distance between the ears, the brain "hears" the inputs from the ears as out of phase with each other. As the sound wave passes around the skull, each ear gets a different portion of the wave. It is this waveform phase difference that allows for accurate location of sounds below 1000 Hz(9). Audio direction finding at higher frequencies is less accurate than it is for frequencies below 1000 Hz. At 8000 Hz the pinna (external ear) becomes effective as an aid to localization. In summary it's the ability of the brain to detect a waveform phase difference is what enables it to perceive binaural beats.

Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×