We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
Some studies have found that binaural beats can affect cognitive function positively or negatively, depending on the specific frequency that’s generated. For example, a study of long-term memory found that beta-frequency binaural beats improved memory, while theta-frequency binaural beats interfered with memory. This is something for scientists to continue to examine closely. For people who use binaural beats, it’s important to understand that different frequencies will produce different effects.
Also, don’t you think that the inherent hemispheric synchronization using binaural beats might be a positive benefit within itself? While it’s true that the huge majority of us use both sides of our brains most of the time, it’s also true that many of us are a bit polarized to one side or the other in general, or when doing a particular kind of activity or focus. I’ve found stimulating a more equally and consistently whole brain activity has it’s own benefits other than the entrainment aspect.
All brainwave frequencies are useful and beneficial at certain times – there is no brainwave that is intrinsically better than another. However, by deliberately choosing to attain a particular brainwave state, a corresponding mental state can be brought about at the same time. For example, a working person who has been in an overly alert beta brainwave pattern for many hours can quickly shift their mind and body into a relaxed state by listening to a few minutes of brainwave entrainment music for inducing alpha or theta brainwaves.

Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]

×