Stress is a significant individual and public health problem that is associated with numerous physical and mental health concerns. It is estimated that between 75% and 90% of primary care physician visits are caused by stress-related illnesses (2). Cardiovascular disease, obesity, diabetes, depression, anxiety, immune system suppression, headaches, back and neck pain, and sleep problems are some of the health problems associated with stress (4,8). These conditions are some of the most burdensome health problems in the United States based on health care costs, the number of people affected, and the impact on individual lives. Extreme levels of stress were reported by 22% of respondents from the 2011 Stress in America™ survey, and 39% reported that their level of stress had increased during the past year (3). More than 80% of the survey respondents at the WorldatWork Conference in 2012 reported that stress moderately or significantly contributed to their health care costs (6).
Binaural beats require two separate tones from two sources that are combined inside the listener’s brain to form the target tone. The lower frequency sound is called the carrier tone, and it is combined with a higher frequency sound known as the offset tone. Because of this, binaural beats must be listened to with stereo headphones or the effect is lost. Binaural beats create a hypnotic effect, but they are not the most effective tool for brainwave entrainment, and binaural beats are often ineffective for people with hearing loss.

♥ I admit that I do not know much about brainwaves and can be swayed by suggestion (ah, the fickle subconscious), but since using this machine and sort of hiding the noise with other sounds or my own music so it is not so obvious to me, it has helped me get through my email correspondences and other online tasks with the focus that I need. Thank you so much for making this!

Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×