Isochronic tones work just the same in delta as they do in alpha, theta and beta and they are widely used in the brainwave entrainment community to help people sleep. Like you, I’ve also seen some websites saying they don’t work in delta, but it’s a bit like the game of Chinese Whispers, where someone makes a comment and then after it gets passed around and shared a lot the message gets distorted and appears to be a fact. I don’t know of any scientific reason why they wouldn’t work in delta. I remember some people talking about this on a brainwave entrainment forum many years ago. They were saying they found isochronic tones a bit too abrupt for using to help them sleep and they preferred binaural beats, as they thought they were a more soothing sound. That was just a personal preference shared by a couple of prominent forum members at the time and some people then took that as a fact for everyone. That’s where I think that belief originated from.

Synchronized brain waves have long been associated with meditative and hypnogogic states, and audio with embedded binaural beats has the ability to induce and improve such states of consciousness. The reason for this is physiological. Each ear is "hardwired" (so to speak) to both hemispheres of the brain (Rosenzweig, 1961). Each hemisphere has its own olivary nucleus (sound-processing center) which receives signals from each ear. In keeping with this physiological structure, when a binaural beat is perceived there are actually two standing waves of equal amplitude and frequency present, one in each hemisphere. So, there are two separate standing waves entraining portions of each hemisphere to the same frequency. The binaural beats appear to contribute to the hemispheric synchronization evidenced in meditative and hypnogogic states of consciousness. Brain function is also enhanced through the increase of cross-collosal communication between the left and right hemispheres of the brain.

Your brain operates at certain levels of activity – the normal waking, active Beta, the meditative Alpha, the asleep-and-dreaming or deep meditative Theta, and the deep sleep/unconscious Delta. Beta is characterized by one thing we all want to get away from – stress.But that brainwave state has its place. It’s the action mode, and that’s the way it should be! If we’re not alert when we’re awake, bad things can happen, right?
You listen to binaural beats using headphones. In each ear, you receive sound at a slightly different frequency (often accompanied by some relaxing background sounds). If your left ear receives a 300-hertz tone and your right ear receives a 280-hertz tone, your brain will process and absorb a 10-hertz tone. That’s a very low-frequency soundwave—one you can’t actually hear. But you don’t need to hear the sound for your brain to be affected by it.
Brainwave entrainment music can be used almost anywhere and anytime, making this mood and self-improvement method versatile and flexible enough to do at work, while traveling, or at other times during the day. When used in the workplace during short rest periods, brainwave entrainment techniques can enhance concentration, communication, and work productivity.
What are some common experiences or thought patterns that can cause the body to feel stress, including some that you might never have associated with stress before? Things like financial pressure, a lack of sleep, emotional problems in your relationships, overtraining or doing too much exercise, and even dieting can all send signals to the body that it’s under stress.
Many people exercise to control weight and get in better physical condition to become more healthy or physically attractive, but exercise and stress management are also closely linked. Exercise provides a distraction from stressful situations, as well as an outlet for frustrations, and gives you a lift via endorphins as well. This article can tell you more about the stress management benefits of exercise, and help you get more active in your daily life.
Alpha (12hz – 8hz) – Awake, but deeply relaxed. Simply closing your eyes will produce alpha brainwaves. This category is associated with daydreaming, visualization, imagination, light meditation. Brainwave expert Anna Wise called the alpha range the bridge between beta and theta. (More information can be found in Wise’ book The High-Performance Mind)

Entrainment is like priming the pump of meditation. It doesn’t “cause” meditation any more than pouring that little bit of water into the pump initially “causes” water to appear in the well. The water was already there. The conditions for the pump to do its job just needed to be set up. What entrainment does is to create the conditions and the internal environment typically associated with meditation. You could get to that point without entrainment, certainly, but the entrainment allows you to get there quicker, more consistently, and to remain there for longer periods of time than you would ordinarily be capable of doing on your own.


Theta waves also have been observed in moments when a person recalls information from the past, and this may be what links them also to improvement in learning ability. We also experience theta waves when we go into automatic pilot mode, such as when doing a repetitive task like driving a familiar route where the mind become disconnected while you still drive safely toward your destination.
Above is a nice, simple and short chart of the various brainwave ranges and the types of effects they generally have and what sorts of activities they may be able to enhance. There simply is nothing more detailed than what this chart contains about entrainment frequencies and what they are useful for. Those other elaborate lists to be found on the internet are nothing but the product of overactive imaginations.
Joe:             The Journey  soundscape took a lot of work. I wanted to bring in the very best of what I knew about brainwave entrainment and to make the best brainwave entrainment product—with the best entrainment technology—that I possibly could. So, there are all sorts of things going on in Journey  to provide a sound bed to support the experience of expansiveness and also communicate elements of the heart-based work I talked about earlier. (See part I of this interview, A Guide to Transpersonal Meditation.)
Binaural beats can easily be heard at the low frequencies (< 30 Hz) that are characteristic of the EEG spectrum (Oster, 1973). This perceptual phenomenon of binaural beating and the objective measurement of the frequency-following response (Hink, Kodera, Yamada, Kaga, & Suzuki, 1980) suggest conditions which facilitate entrainment of brain waves and altered states of consciousness. There have been numerous anecdotal reports and a growing number of research efforts reporting changes in consciousness associated with binaural-beats. "The subjective effect of listening to binaural beats may be relaxing or stimulating, depending on the frequency of the binaural-beat stimulation" (Owens & Atwater, 1995). Binaural beats in the delta (1 to 4 Hz) and theta (4 to 8 Hz) ranges have been associated with reports of relaxed, meditative, and creative states (Hiew, 1995), and used as an aid to falling asleep. Binaural beats in the alpha frequencies (8 to 12 Hz) have increased alpha brain waves (Foster, 1990) and binaural beats in the beta frequencies (typically 16 to 24 Hz) have been associated with reports of increased concentration or alertness (Monroe, 1985) and improved memory (Kennerly, 1994).
Cortisol is the principle hormone (although not the only hormone) tied to our innate “flight-or-fight” response, which is how the body reacts to acute stress by either helping us run from the situation or stick around and fight our way through. When short spikes in cortisol/adrenaline happen over and over again nearly every day, they cause wear and tear on the body and speed up the aging process.

♥ At 56, I have tried many a thing. The default setting of Binaural Beat Machine does make me very relaxed. But it's not what it does on the moment, pleasant as this might be. It is the quality of the sleep, when I use it for half an hour before going to bed. I sleep a deep, restful sleep. I use it during day-time meditation as well, and the clear-mind feeling about an hour later is wonderful!

If mind-consciousness is not the brain, why then does science relate states of consciousness and mental functioning to Brainwave frequencies? And how is it that audio with embedded binaural beats alters brain waves? The first question can be answered in terms of instrumentation. There is no objective way to measure mind or consciousness with an instrument. Mind-consciousness appears to be a field phenomenon which interfaces with the body and the neurological structures of the brain (Hunt, 1995). One cannot measure this field directly with current instrumentation. On the other hand, the electrical potentials of brain waves can be measured and easily quantified. Contemporary science likes things that can be measured and quantified. The problem here lies in oversimplification of the observations. EEG patterns measured on the cortex are the result of electro-neurological activity of the brain. But the brain's electro-neurological activity is not mind-consciousness. EEG measurements then are only an indirect means of assessing the mind-consciousness interface with the neurological structures of the brain. As crude as this may seem, the EEG has been a reliable way for researchers to estimate states of consciousness based on the relative proportions of EEG frequencies. Stated another way, certain EEG patterns have been historically associated with specific states of consciousness. It is reasonable to assume, given the current EEG literature, that if a specific EEG pattern emerges it is probably accompanied by a particular state of consciousness.  
^ Bittman, B. B., Snyder, C., Bruhn, K. T., Liebfreid, F., Stevens, C. K., Westengard, J., and Umbach, P. O., Recreational music-making: An integrative group intervention for reducing burnout and improving mood states in first year associate degree nursing students: Insights and economic impact" International Journal of Nursing Education Scholarship, Vol. 1, Article 12, 2004.
×