Today, EEG machines are used for diagnosing epilepsy and sleep disorders, for determining dosages for anesthesia, and measuring the brain activity of people in comas or suffering from brain trauma. EEG machines also continue to play a role in researching and understanding brainwave entrainment and developing new and better methods for delivering the benefits of this form of brainwave modification. 
If you’re operating in Alpha mode, you’ll feel very present and in the moment. You might be somewhat reactive to the world around you, but you’ll feel like you have time to process what’s going on rather than just react on instinct. This is a wonderful state to achieve when meditating or doing something that requires coordination, focus and learning.

Thanks for the reply. I am now clearer on ‘what’ is heard. Can you expand or point me in direction ..a bit more about ‘pitch frequency’ and frequency spoken about and what exactly is the difference ..and how we use the higher pitch frequencies to ‘hear’ or become aware of them? Would you only pick up the low freq on a EEG?. sorry for being pedantic ..it still does not clear up split isochronics and possibly creating same situation as binaural beats..


Hi Et, In all the feedback and studies I’ve read and looked into over the years, I’ve seen lots of feedback from people talking about how they don’t like the sound of the tones, or they find them irritating in some way. Unfortunately, there doesn’t seem to be any particular reason why one person likes it and the next doesn’t. It’s a bit like normal music, one person’s sweet symphony is another person pneumatic drill. It’s common for people to find it weird and maybe annoying at first, which is how I felt in the beginning. But usually after a few listens you can start to get used to it and appreciate the sound, and especially the feeling it gives you. Personally, I think it can help if you try to embrace the sound, psychologically speaking beforehand. It can also help to have the sound playing at a very low volume, to begin with, then building it up as you get more used to it.
The mechanism for this is that when your eyes or ears are exposed to a particular frequency of pulses or beats, the thalamus first distributes this information to the entire brain, including the visual and cerebral cortex where neural activity begins to synchronize to the incoming frequency, producing hemispheric synchronization and a balance of brainwave activity across the brain.
This phenomenon is best known in acoustics or music, though it can be found in any linear system: "According to the law of superposition, two tones sounding simultaneously are superimposed in a very simple way: one adds their amplitudes".[2] If a graph is drawn to show the function corresponding to the total sound of two strings, it can be seen that maxima and minima are no longer constant as when a pure note is played, but change over time: when the two waves are nearly 180 degrees out of phase the maxima of one wave cancel the minima of the other, whereas when they are nearly in phase their maxima sum up, raising the perceived volume.

The activity of neurons generate electric currents; and the synchronous action of neural ensembles in the cerebral cortex, comprising large numbers of neurons, produce macroscopic oscillations. These phenomena can be monitored and graphically documented by an electroencephalogram (EEG). The electroencephalographic representations of those oscillations are typically denoted by the term 'brainwaves' in common parlance.[4][5]
×