In 1984 medical researcher Dr. Gene W. Brockopp published a paper making several conclusions of audio and visual entrainment (AVE). Such conclusions were that hemispheric synchronization caused by AVE is related to increased intellectual functioning, practiced use of AVE overtime leads to a cumulative effect, and AVE may result in the recovery of early childhood experiences.

When stress overwhelms your nervous system, your body is flooded with chemicals that prepare you for “fight or flight.” This stress response can be lifesaving in emergency situations where you need to act quickly. But when it’s constantly activated by the stresses of everyday life, it can wear your body down and take a toll on your emotional and physical health.
In 1956, the famous neuroscientist W. Gray Walter published the results of studying thousands of test subjects using photic stimulation, showing their change in mental and emotional states. He also learned that photic stimulation not only altered brainwaves, but that these changes were occurring in areas of the brain outside of vision. In Walter’s words:
Entrainment is like priming the pump of meditation. It doesn’t “cause” meditation any more than pouring that little bit of water into the pump initially “causes” water to appear in the well. The water was already there. The conditions for the pump to do its job just needed to be set up. What entrainment does is to create the conditions and the internal environment typically associated with meditation. You could get to that point without entrainment, certainly, but the entrainment allows you to get there quicker, more consistently, and to remain there for longer periods of time than you would ordinarily be capable of doing on your own.
One faulty expectation as it pertains to brainwave entrainment is that listening to an entrainment track is the same as meditating. If you’ve understood the principles so far as they’ve been laid out you understand why this idea is completely untrue. If the answer is not yet obvious to you, read the material covering these principles again and try to grasp their meaning.
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]
×