“The great neuroscientist W. Gray Walter carried out a series of experiments in the late forties and fifties in which he used an electronic stroboscopic device in combination with EEG equipment to send rhythmic light flashes into the eyes of the subjects at frequencies ranging from ten to twenty five flashes per second. He was startled to find that the flickering seemed to alter the brain-wave activity of the whole cortex instead of just the areas associated with vision. Wrote Walter, “The rhythmic series of flashes appear to be breaking down some of the physiologic barriers between different regions of the brain. This means the stimulus of flicker received by the visual projection area of the cortex was breaking bounds— its ripples were overflowing into other areas.”
This blog was created from an interview with Joseph Kao, creator of iAwake’s Journey to the Center of the Self, and iAwake’s CEO John Dupuy, by Heidi Mitchell, who has been working with John for 11 years as assistant and editor. John introduced her to Integral theory and practice and brainwave entrainment enhanced meditation in 2007. Heidi is also a freelance editor of nonfiction books, blogs, and web sites. She can be reached at www.heidimitchelleditor.com.

Your brain cells reset their sodium & potassium ratios when the brain is in Theta state. The sodium & potassium levels are involved in osmosis which is the chemical process that transports chemicals into and out of your brain cells. After an extended period in the Beta state the ratio between potassium and sodium is out of balance. This the main cause of what is known as "mental fatigue". A brief period in Theta (about 5 - 15min) can restore the ratio to normal resulting in mental refreshment.  
A therapy that slows brainwave activity, helping to produce low-frequency waves, is likely to aid relaxation and sleep. But it’s not only lowering brainwave frequency that binaural beats may offer to sleep and relaxation. A small study (19 people) has found that exposure to binaural beats is associated with changes to three hormones important to sleep and well being:
Neural oscillations are rhythmic or repetitive electrochemical activity in the brain and central nervous system. Such oscillations can be characterized by their frequency, amplitude and phase. Neural tissue can generate oscillatory activity driven by mechanisms within individual neurons, as well as by interactions between them. They may also adjust frequency to synchronize with the periodic vibration of external acoustic or visual stimuli.[3]