Most of these websites give some brief explanation of entrainment. The example you hear most often is that of Dutch polymath Christiaan Huygens, who in 1665, hung two pendulum clocks next to each other on a wall. He noticed that the pendulums eventually matched each others' frequency, but always in antiphase, opposite to each other, as if canceling each other out. He'd try disturbing one or setting them in sync, but they'd always return to the same antiphase synchronization. Huygen's experience is widely touted on binaural beat websites as a demonstration of how systems can become spiritually connected through some energy field. However, they misunderstand what happened, and have not read the full story. Huygens also tried taking one clock off the wall, and as soon as they were no longer physically connected to one another via the actual wall, the effect disappeared. It was not the proximity of the clocks to one another that created the entrainment; it was their physical, mechanical connection to one another. As each pendulum swung it imparted an infinitesimal equal and opposite reaction to the wall itself. With two clocks on the wall, the system naturally sought the lowest energy level, according to the laws of thermodynamics; and both pendulums would thus swing exactly counter to each other, minimizing the system's total energy.
But the question is: Does it have a special effect on the brain? A lot of people think so. The basic claim being made for binaural beats is "resonant entrainment". Entrainment, in physics, is when two systems which oscillate at different frequencies independently are brought together, they synchronize with one another, at whatever the combined system's resonant frequency is. Examples of entrainment occur in animals in nature; for example the chirping of crickets or the croaking of frogs. Synchronization of menstrual cycles in women is another example. Even people coming together and dancing with one another is a type of entrainment. The basic claim for binaural beats is that the perceived low-frequency beat will entrain your brain wave pattern, thus forcing your brain into some desired state.
When tuning instruments that can produce sustained tones, beats can be readily recognized. Tuning two tones to a unison will present a peculiar effect: when the two tones are close in pitch but not identical, the difference in frequency generates the beating. The volume varies like in a tremolo as the sounds alternately interfere constructively and destructively. As the two tones gradually approach unison, the beating slows down and may become so slow as to be imperceptible. As the two tones get further apart, their beat frequency starts to approach the range of human pitch perception[1], the beating starts to sound like a note, and a combination tone is produced. This combination tone can also be referred to as a missing fundamental, as the beat frequency of any two tones is equivalent to the frequency of their implied fundamental frequency.
From a brainwave entrainment effectiveness perspective, it’s my understanding that the response from isochronic tones stimulation starts to diminish over 30Hz and that 40Hz is about the limit for using them. So from what I’ve read on the topic a 100Hz beat wouldn’t work, probably because it’s too fast for the brain to process and synchronise with it.
A 2008 study at Hofstra University played two different binaural beats and a control sound (a babbling brook) to patients with high blood pressure. There was no difference between the groups. In one small study from Japan that was published in the Journal of Neurophysiology in 2006, they played various binaural beats to nine subjects, and observed the resulting EEGs. They found great variability in the results. Their conclusion was that listening to binaural beats can produce activity on the human cerebral cortex, however the cause was more likely a conscious auditory reaction and was not correlated to the frequency of the binaural beat. However, a 2005 study published in Clinical Neurophysiology found that they were able to induce a desired frequency in the EEG matching the phantom beat frequency encoded in a binaural beat, however this was with a single subject and was neither blinded nor controlled.
People who meditate regularly enjoy many benefits such as increased sense of well being, happiness, contentment, and far less anxiety that many other people. Some believe that this is due to both hemispheres of the brain being in sync with each other, which meditative practice can provide. Therefore, a goal of using technology to entrain the brain and align the frequencies of the brain hemispheres has become a very interesting avenue of science and experimentation.
If new stressors are challenging your ability to cope or if self-care measures just aren't relieving your stress, you may need to look for reinforcements in the form of therapy or counseling. Therapy also may be a good idea if you feel overwhelmed or trapped, if you worry excessively, or if you have trouble carrying out daily routines or meeting responsibilities at work, home or school.
Turns out, science says there is something to needing “fresh air”—even opening a window can help get more oxygen to your brain, soothing stress. “We live so much of our lives indoors, that when stress hits, one of my go-to techniques is to get outside or open a window,” Dr. Serani says. “Taking in a nice deep breath of crisp fresh air can immediately shift your neurochemistry.” If you’re overwhelmed with work, it can seem hard to take a break; but a quick step outside is even recommended by the American Psychological Association. When you come back, you’ll be recharged and ready to take on the challenge.

The quickest way to relieve stress is to release endorphins through exercise. An easy way to do this is through shaking and dancing, a form of expressive meditation that loosens your joints as well as clears the mind. It’s one of our favorite techniques to teach in conflict and disaster areas, such as Haiti. Start by standing with your feet shoulder-width apart, knees slightly bent, shoulders relaxed, and shake your whole body for a few minutes (we recommend 7-8 minutes). Then, stop for a minute or two and pay attention to your breathing and physical sensations. Finally, turn on fast music – anything that gets you energized, and allow the music to move you. Don’t feel the need to follow any specific dance moves, just do whatever feels good for you in the moment (it might help to close your eyes). Dance for about 5 minutes, or until you feel satisfied.
The heart meditation is amazing. The recording of sound, vibration and guided words were heartfelt. I felt energy in waves as I listened and felt various sensations of heat, tingling, and muscular tension release as I become one with the recording.  A sincere thank you for making these recordings available to us in search of an enlightened path with the help of sound and vibration. 
In 1956, the famous neuroscientist W. Gray Walter published the results of studying thousands of test subjects using photic stimulation, showing their change in mental and emotional states. He also learned that photic stimulation not only altered brainwaves, but that these changes were occurring in areas of the brain outside of vision. In Walter’s words:
“Stress” is a commonly used term, and it is often used with different meanings. The standard definition for stress that will be used in this article is the disruption of the body’s homeostasis or a state of disharmony in response to a real or perceived threat or challenge (8). The threatening or challenging situation is referred to as a “stressor.” When a person encounters a stressor, the body prepares to respond to the challenge or threat. The autonomic nervous and endocrine systems respond by producing the hormones epinephrine, norepinephrine, and cortisol. The result of this hormone production is a cascade of physiological reactions that make up the stress response. Epinephrine and norepinephrine are involved in the initial changes that take place to prepare the body to react and to prepare for a challenge. These responses include increases in heart and respiration rates, blood pressure, perspiration, and energy production (8). There also is a suppression of immune function, production of β-endorphin (the body’s natural pain killer), and increased acuity of the senses. These changes make up the fight-or-flight response, which prepares the body to cope with the stressor. If the stressor is perceived as negative or more as a threat than as a challenge, cortisol production is increased. Cortisol is involved in energy production but also suppresses immune function.

Synchronized brain waves have long been associated with meditative and hypnogogic states, and audio with embedded binaural beats has the ability to induce and improve such states of consciousness. The reason for this is physiological. Each ear is "hardwired" (so to speak) to both hemispheres of the brain (Rosenzweig, 1961). Each hemisphere has its own olivary nucleus (sound-processing center) which receives signals from each ear. In keeping with this physiological structure, when a binaural beat is perceived there are actually two standing waves of equal amplitude and frequency present, one in each hemisphere. So, there are two separate standing waves entraining portions of each hemisphere to the same frequency. The binaural beats appear to contribute to the hemispheric synchronization evidenced in meditative and hypnogogic states of consciousness. Brain function is also enhanced through the increase of cross-collosal communication between the left and right hemispheres of the brain.
You’ve heard me talk before about how sound can make a difference to sleep. Patients often tell me that they fall asleep to relaxing music, they seem to find it really helps them let go of active thoughts and quiet their mind—which, like yours probably does, tends to race from one thing to the next all day long (aka I can’t turn off my brain syndrome).
Maybe a favorite popular song, a certain piece of Classical music, a raucous dance beat, the pulse of Reggae, Indian, or African drums, or the chanting of Gregorian or Tibetan monks, but you probably know how the sound of music, drumming, or chanting is capable of transporting you into an altered and joyous state of mind and uplifting your spirits.
Isochronic tones are the newest technological advancement in the field of brainwave entrainment. Isochronic tones are regular beats of a single tone. In fact, an isochronic tone is a tone that is being turned on and off rapidly at regular intervals, creating sharp and distinctive pulses of sound. This effect called “Amplitude Entrainment” tends to excite the thalamus and causes the brain to generate the same brainwave frequency (“frequency following response”) as the tone. The thalamus, vital structure lying deep within the brain, has multiple important functions: it is involved in sensory and motor signal relay, and the regulation of consciousness and sleep. Therefore, the use of isochronic tones is a very effective way to induce a desired brainwave state.

Looking for an even more impactful way to feel the benefits of exercise? Do so while listening to uplifting music. Research findings indicate that music listening positively impacts the psycho-biological stress system, helps activate the parasympathetic nervous system, improves recovery time, and has benefits for hormonal balance and brain functioning overall. (4)
A crossover RCT of a single session of theta stimulation in four healthy adults reported no significant improvement in verbal fluency or attention associated with the intervention and a reduction in immediate recall. Controlled comparisons reported significant benefit from the intervention in all three outcomes measured. Six pre/post studies reported significant benefit from the intervention for 19 of 28 cognitive outcomes.
Your brain operates at certain levels of activity – the normal waking, active Beta, the meditative Alpha, the asleep-and-dreaming or deep meditative Theta, and the deep sleep/unconscious Delta. Beta is characterized by one thing we all want to get away from – stress.But that brainwave state has its place. It’s the action mode, and that’s the way it should be! If we’re not alert when we’re awake, bad things can happen, right?
×